
1 Proof techniques

Proof Technique 1 (Contraposition). To prove a statement of the form

P =⇒ Q

instead prove the statement

(¬Q) =⇒ (¬P ).

Problem 1.1. Prove that, for any real numbers x and y, if xy = 0 then x = 0 or y = 0.

Proof Technique 2 (Induction). To prove a statement of the form

∀ n ∈ N, P (n)

prove the following statements:

(i) P (0)

(ii) ∀ n ∈ N, (P (n) =⇒ P (n + 1))

Problem 2.1. Prove that 2n < 3n for every integer n > 0.

Problem 2.2. Suppose that p and q are positive real numbers such that p < q. Prove that pn < qn

for all natural numbers n > 1. You may use the following facts about the < relation: If x < y and
0 < a < b then ax < by.

Proof Technique 3 (Proof by cases). To prove a statement

(P ∨Q) =⇒ R

prove the two statements

P =⇒ R

Q =⇒ R.

Problem 3.1. Prove that for any natural number n either n or n + 1 is divisible by 2.

Proof Technique 4 (Strong induction). To prove a statement of the form

∀ n ∈ N, P (n)

prove the sentence

∀ n ∈ N,
((
∀m ∈ N, (m < n =⇒ P (m))

)
=⇒ P (n)

)
.

Here is a slightly less precise but more readable version of this sentence:

∀ n,
((
∀m < n, P (m)

)
=⇒ P (n)

)
Problem 4.1. Prove that, for every integer n, either there is an integer m such that nm = 1 or
there is a prime number p such that p|n.

Problem 4.2. Let a0, a1, a2, . . . be the sequence with the following properties:

(i) a0 = a1 = 0

(ii) a2 = 1

(iii) an = 4an−1 − 5an−2 + 2an−3

Prove that an = 2n − n− 1 for all natural numbers n.



Solution. We have 20 − 0− 1 = 0 and 21 − 1− 1 = 0 and 22 − 2− 1 = 1. This gives a base case.
Now assume for the sake of strong induction that n ≥ 3 and that am = 2m −m− 1 for m < n.

We want to prove that an − 2n − n− 1 = 0. We have

an = 4an−1 − 5an−2 + 2an−3

= 4× (2n−1 − n)− 5× (2n−2 − n + 1) + 2× (2n−3 − n + 2)

= 2× 2n − 2n − 2n−2 + 2n−2 − 4n + 5n− 2n− 5 + 4

= 2n − n− 1

exactly as desired. This proves the induction step and completes the proof.

Problem 4.3. Prove that, for any natural number n, one of the numbers n, n + 1, or n + 2 is
divisible by 3.

Solution. The proof is by induction on n. Let P (n) be the sentence “Either n, n + 1, or n + 2 is
divisible by 3.” The statement is certainly true for n = 0, since 0 is divisible by 3, so we have the
base case for induction.

Assume that n is an integer such that P (n) is true. We prove that P (n + 1) is true. We know
from P (n) that either n, n + 1, or n + 2 is divisible by 3. If 3|n + 1 or 3|n + 2 then P (n + 1) is
obviously true (after all P (n + 1) is the sentence 3|n + 1 ∨ 3|n + 2 ∨ 3|n + 3). The only remaining
possibility is that 3|n. In that case n = 3k for some integer k (by the definition of divisibility), so
n + 3 = 3k + 3 = 3(k + 1). As k + 1 is an integer, this tells us that n + 3 is divisible by 3, again by
the definition of divisibility. Thus

3|n ∨ 3|n + 1 ∨ 3|n + 2 =⇒ 3|n + 1 ∨ 3|n + 2 ∨ 3|n + 3,

which proves the induction step.

Problem 4.4. Prove by induction that every non-empty subset of N has a least element.

Solution. Suppose that S ⊂ N is a subset without a least element. We prove by strong induction
that S = ∅. Let P (n) be the sentence n 6∈ S. We prove P (n) for all natural numbers n by strong
induction on n.

Let n be a natural number and assume for the sake of strong induction that, for all m < n,
the sentence P (m) is true. That is, for all m < n, we know that m 6∈ S. Therefore, if n were in
S then n would be the least element of S. As S has no least element, we conclude that m 6∈ S.
Therefore P (n) is also true. This proves the induction step, so by strong induction we conclude
that S = ∅.

Proof Technique 5 (Bidirectional induction). To prove a statement of the form

∀ n ∈ Z, P (n)

instead prove the two sentences

(i) ∃ n ∈ Z, P (n)

(ii) ∀ n ∈ Z, (P (n) ⇐⇒ P (n + 1))

2 Other problems

Problem 2.1. Suppose that A = {a, b, c} and R is a total order on R such that

(a, b) ∈ R

(b, c) ∈ R

(c, a) ∈ R.

What is the cardinality of A? Justify your answer.



Problem 2.2. Prove that 1 + 2 + 4 + 8 + · · ·+ 2n = 2n+1 − 1 for every n ∈ N.

Problem 2.3. Prove that divisibility is a partial order on the natural numbers but not on the
integers.
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