1 Proof techniques
Proof Technique 1 (Contraposition). To prove a statement of the form
P = Q
instead prove the statement
(-Q) = (=P).
Problem 1.1. Prove that, for any real numbers = and y, if zy = 0 then x =0 or y = 0.

Proof Technique 2 (Induction). To prove a statement of the form
VneN, P(n)

prove the following statements:
(i) P(0)
(ii) VneN, (P(n) = P(n+1))
Problem 2.1. Prove that 2" < 3" for every integer n > 0.

Problem 2.2. Suppose that p and ¢ are positive real numbers such that p < q. Prove that p"™ < ¢"
for all natural numbers n > 1. You may use the following facts about the < relation: If z < y and
0 < a < b then azx < by.

Proof Technique 3 (Proof by cases). To prove a statement
(PVQ) = R
prove the two statements

P = R
@ = R.

Problem 3.1. Prove that for any natural number n either n or n + 1 is divisible by 2.
Proof Technique 4 (Strong induction). To prove a statement of the form
VneN, P(n)
prove the sentence
VneN, ((Vm eN, (m<n = P(m))) = P(n))
Here is a slightly less precise but more readable version of this sentence:
Vn, ((vm <n, P(m)) = P(n))

Problem 4.1. Prove that, for every integer n, either there is an integer m such that nm = 1 or
there is a prime number p such that p|n.

Problem 4.2. Let ag,a1,as, ... be the sequence with the following properties:
(i) ap=a1 =0
(ii) ae =1
(iil) an =4an—1 — B5an—2+ 2a,_3

Prove that a,, = 2™ — n — 1 for all natural numbers n.



Solution. We have 2° =0 —1=0and 2! —1 —1=0 and 22 — 2 — 1 = 1. This gives a base case.
Now assume for the sake of strong induction that n > 3 and that a,, = 2" —m — 1 for m < n.
We want to prove that a,, — 2™ —n — 1 = 0. We have

ap = 4ap_1 — S0p—3 + 20p_3
=4Ax (2" —n)—5x (2" —n4+1)+2x (2" —n+2)
=2x 2" —2" o2 492 _4p 4 E5p—2n—5+4

=2"-n-1
exactly as desired. This proves the induction step and completes the proof. O

Problem 4.3. Prove that, for any natural number n, one of the numbers n, n + 1, or n + 2 is
divisible by 3.

Solution. The proof is by induction on n. Let P(n) be the sentence “Either n, n 4+ 1, or n + 2 is
divisible by 3.” The statement is certainly true for n = 0, since 0 is divisible by 3, so we have the
base case for induction.

Assume that n is an integer such that P(n) is true. We prove that P(n + 1) is true. We know
from P(n) that either n, n 4+ 1, or n + 2 is divisible by 3. If 3|n 4+ 1 or 3|n + 2 then P(n + 1) is
obviously true (after all P(n + 1) is the sentence 3|n + 1V 3|n 4+ 2V 3|n + 3). The only remaining
possibility is that 3|n. In that case n = 3k for some integer k (by the definition of divisibility), so
n+3=3k+3=3(k+1). As k+ 1 is an integer, this tells us that n + 3 is divisible by 3, again by
the definition of divisibility. Thus

3InVv3n+1Vv3n+2 = 3n+1V3n+2Vv3n+3,
which proves the induction step. U
Problem 4.4. Prove by induction that every non-empty subset of N has a least element.

Solution. Suppose that S C N is a subset without a least element. We prove by strong induction
that S = @. Let P(n) be the sentence n ¢ S. We prove P(n) for all natural numbers n by strong
induction on n.

Let n be a natural number and assume for the sake of strong induction that, for all m < n,
the sentence P(m) is true. That is, for all m < n, we know that m ¢ S. Therefore, if n were in
S then n would be the least element of S. As S has no least element, we conclude that m ¢ S.
Therefore P(n) is also true. This proves the induction step, so by strong induction we conclude
that S = @. O

Proof Technique 5 (Bidirectional induction). To prove a statement of the form
VneZ, P(n)
instead prove the two sentences

(i) IneZ, P(n)
(ii) Vn € Z,(P(n) <= P(n+1))

2 Other problems

Problem 2.1. Suppose that A = {a,b,c} and R is a total order on R such that

(a,b) € R
(b,c) € R
(c,a) € R.

What is the cardinality of A7 Justify your answer.



Problem 2.2. Prove that 14+ 24448+ --- 42" = 2" _ 1 for every n € N.

Problem 2.3. Prove that divisibility is a partial order on the natural numbers but not on the
integers.
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