1 Proof techniques

Proof Technique 1 (Contraposition). To prove a statement of the form

$$P \implies Q$$

instead prove the statement

$$(\neg Q) \implies (\neg P).$$

Problem 1.1. Prove that, for any real numbers x and y, if xy = 0 then x = 0 or y = 0.

Proof Technique 2 (Induction). To prove a statement of the form

 $\forall n \in \mathbb{N}, P(n)$

prove the following statements:

(i) P(0)(ii) $\forall n \in \mathbb{N}, (P(n) \implies P(n+1))$

Problem 2.1. Prove that $2^n < 3^n$ for every integer n > 0.

Problem 2.2. Suppose that p and q are positive real numbers such that p < q. Prove that $p^n < q^n$ for all natural numbers n > 1. You may use the following facts about the < relation: If x < y and 0 < a < b then ax < by.

Proof Technique 3 (Proof by cases). To prove a statement

$$(P \lor Q) \implies R$$

prove the two statements

$$\begin{array}{l}P\implies R\\Q\implies R.\end{array}$$

Problem 3.1. Prove that for any natural number n either n or n + 1 is divisible by 2.

Proof Technique 4 (Strong induction). To prove a statement of the form

$$\forall n \in \mathbb{N}, P(n)$$

prove the sentence

$$\forall n \in \mathbb{N}, \left(\left(\forall m \in \mathbb{N}, (m < n \implies P(m)) \right) \implies P(n) \right).$$

Here is a slightly less precise but more readable version of this sentence:

$$\forall n, \left(\left(\forall m < n, P(m) \right) \implies P(n) \right)$$

Problem 4.1. Prove that, for every integer n, either there is an integer m such that nm = 1 or there is a prime number p such that p|n.

Problem 4.2. Let a_0, a_1, a_2, \ldots be the sequence with the following properties:

- (i) $a_0 = a_1 = 0$
- (ii) $a_2 = 1$
- (iii) $a_n = 4a_{n-1} 5a_{n-2} + 2a_{n-3}$

Prove that $a_n = 2^n - n - 1$ for all natural numbers n.

Solution. We have $2^0 - 0 - 1 = 0$ and $2^1 - 1 - 1 = 0$ and $2^2 - 2 - 1 = 1$. This gives a base case.

Now assume for the sake of strong induction that $n \ge 3$ and that $a_m = 2^m - m - 1$ for m < n. We want to prove that $a_n - 2^n - n - 1 = 0$. We have

$$a_n = 4a_{n-1} - 5a_{n-2} + 2a_{n-3}$$

= 4 × (2ⁿ⁻¹ - n) - 5 × (2ⁿ⁻² - n + 1) + 2 × (2ⁿ⁻³ - n + 2)
= 2 × 2ⁿ - 2ⁿ - 2ⁿ⁻² + 2ⁿ⁻² - 4n + 5n - 2n - 5 + 4
= 2ⁿ - n - 1

exactly as desired. This proves the induction step and completes the proof.

Problem 4.3. Prove that, for any natural number n, one of the numbers n, n + 1, or n + 2 is divisible by 3.

Solution. The proof is by induction on n. Let P(n) be the sentence "Either n, n + 1, or n + 2 is divisible by 3." The statement is certainly true for n = 0, since 0 is divisible by 3, so we have the base case for induction.

Assume that n is an integer such that P(n) is true. We prove that P(n+1) is true. We know from P(n) that either n, n+1, or n+2 is divisible by 3. If 3|n+1 or 3|n+2 then P(n+1) is obviously true (after all P(n+1) is the sentence $3|n+1 \vee 3|n+2 \vee 3|n+3$). The only remaining possibility is that 3|n. In that case n = 3k for some integer k (by the definition of divisibility), so n+3 = 3k+3 = 3(k+1). As k+1 is an integer, this tells us that n+3 is divisible by 3, again by the definition of divisibility. Thus

$$3|n \vee 3|n+1 \vee 3|n+2 \implies 3|n+1 \vee 3|n+2 \vee 3|n+3,$$

which proves the induction step.

Problem 4.4. Prove by induction that every non-empty subset of \mathbb{N} has a least element.

Solution. Suppose that $S \subset \mathbb{N}$ is a subset without a least element. We prove by strong induction that $S = \emptyset$. Let P(n) be the sentence $n \notin S$. We prove P(n) for all natural numbers n by strong induction on n.

Let n be a natural number and assume for the sake of strong induction that, for all m < n, the sentence P(m) is true. That is, for all m < n, we know that $m \notin S$. Therefore, if n were in S then n would be the least element of S. As S has no least element, we conclude that $m \notin S$. Therefore P(n) is also true. This proves the induction step, so by strong induction we conclude that $S = \emptyset$.

Proof Technique 5 (Bidirectional induction). To prove a statement of the form

$$\forall n \in \mathbb{Z}, P(n)$$

instead prove the two sentences

(i)
$$\exists n \in \mathbb{Z}, P(n)$$

(ii) $\forall n \in \mathbb{Z}, (P(n) \iff P(n+1))$

2 Other problems

Problem 2.1. Suppose that $A = \{a, b, c\}$ and R is a total order on R such that

$$(a,b) \in R$$

 $(b,c) \in R$
 $(c,a) \in R.$

What is the cardinality of A? Justify your answer.

Problem 2.2. Prove that $1 + 2 + 4 + 8 + \dots + 2^n = 2^{n+1} - 1$ for every $n \in \mathbb{N}$.

Problem 2.3. Prove that divisibility is a partial order on the natural numbers but not on the integers.