Proof Technique 1 (Direct proof). To prove a statement of the form

$$\forall x \in S, P(x) \implies Q(x)$$

you may use the following template:

- (i) Assume x is an element of S and P(x) is true.
- (ii) Do logical reasoning under these assumptions to conclude Q(x) is true.

Problem 1.1. What should you do if you want to prove $\forall x, Q(x)$?

Problem 1.2. Prove that if A, B, and C are sets such that $A \subset B$ and $B \subset C$ then $A \subset C$.

Proof Technique 2 (Example / Counterexample). To prove a statement of the form

$$\exists x \in S, P(x)$$

construct an element x of S such that P(x) is true.

To *disprove* a statement of the form

$$\forall x \in S, P(x) \implies Q(x)$$

construct an element $x \in S$ such that P(x) is true and Q(x) is false.

Problem 2.1. Prove that it is possible for an integer to be divisible by 2, 3, and 7 and have remainder 3 when divided by 5.

Solution. 168

Problem 2.2. Disprove the assertion that every integer is either prime or composite.

Proof Technique 3 (Contradiction). To prove a statement *P*:

- (i) Assume that $\neg P$ is true.
- (ii) Make logical deductions to arrive at a contradiction.

Problem 3.1. Prove there are infinitely many prime numbers.