Definition 1. An equivalence relation on a set S is a subset R C S x S with the following three
properties:

(i) (reflexivity) if x € S then (z,z) € R;
(ii) (symmetry) if (x,y) € R then (y,z) € R;
(iii) (transitivity) if (z,y) € R and (y, z) € R then (z,2) € R.

Definition 2. Let S be a set and R an equivalence relation on S. An equivalence class of R is a
subset T' C S such that the following conditions hold:

(i) R#£ o
(ii) Y,y € S, ((a:ET/\yeT) S (x,y)eR)

(iil) Va,y € S, ((zGT/\(x,y) €ER) = yGT)

The set of all equivalence classes of R on A is denoted A/R and is pronounced A modulo R.

The equivalence class of an element x € S'is [z ={y € S : (z,y) € R}.

Note that the equivalence class of = depends on the equivalence relation R. If we chose a different
equivalence relation, the equivalence class of x would change.

Problem 3. Suppose that R is a relation on a set A and B is a subset of A. The restriction of
R to B is the relation RN (B x B) on B. If R is an equivalence relation on A, is RN (B X B) an
equivalence relation on B?

A) Yes B) No C) Sometimes

Solution. A) O

Problem 4. For any equivalence relation R on any set A, we have A/R C 24.
A) True B) False

Solution. A) O

Problem 5. If R is an equivalence relation on a set S with n elements, what is the smallest number
of equivalence classes R could have?
A)O B) 1 C)n D) 2n E) oo

Solution. If S = @& then A); otherwise B). O

Problem 6. If R is an equivalence relation on a set S with n elements, what is the largest number
of equivalence classes R could have?
A)O B) 1 C)n D) 2n E)

Solution. C) O

Theorem 7. Let R be an equivalence relation on a set S. The equivalence class of an element
x € S is an equivalence class.

Solution. We prove the first axiom. Since R is reflexive, (x,x) € R, so « € [z]. This proves the first
axiom.

We prove the second axiom. Suppose that y,z € S and y € [z] and z € [x]. We must show that
(y,z) € R. By definition of [z], for y and z to be in [x] means that (z,y) € R and (z,z) € R. Since
R is an equivalence relation, it is symmetric, so we may deduce from (x,y) € R that (y,z) € R.
Finally, since R is an equivalence relation, it is transitive, so we may deduce from (y,x) € R and
(z,z) € R that (y,z) € R, which is exactly what we wanted. This proves the second axiom.

Now we prove the third axiom. Suppose that y,z € S and y € [z] and (y, z) € R. We want to
show that z € [z]. By definition of [z], if y € [z] then (z,y) € R. By transitivity of R we deduce
from (z,y) € R and (y,z) € R that (z,z) € R. Finally, by definition of [z] we learn from (z,z) € R
that [z] € R. This proves the third axiom and completes the proof. O



