
Definition 1. An equivalence relation on a set S is a subset R ⊂ S × S with the following three
properties:

(i) (reflexivity) if x ∈ S then (x, x) ∈ R;

(ii) (symmetry) if (x, y) ∈ R then (y, x) ∈ R;

(iii) (transitivity) if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R.

Definition 2. Let S be a set and R an equivalence relation on S. An equivalence class of R is a
subset T ⊂ S such that the following conditions hold:

(i) R 6= ∅

(ii) ∀ x, y ∈ S,
(

(x ∈ T ∧ y ∈ T ) =⇒ (x, y) ∈ R
)

(iii) ∀ x, y ∈ S,
(

(x ∈ T ∧ (x, y) ∈ R) =⇒ y ∈ T
)

The set of all equivalence classes of R on A is denoted A/R and is pronounced A modulo R.
The equivalence class of an element x ∈ S is [x] = {y ∈ S : (x, y) ∈ R}.
Note that the equivalence class of x depends on the equivalence relation R. If we chose a different

equivalence relation, the equivalence class of x would change.

Problem 3. Suppose that R is a relation on a set A and B is a subset of A. The restriction of
R to B is the relation R ∩ (B × B) on B. If R is an equivalence relation on A, is R ∩ (B × B) an
equivalence relation on B?

A) Yes B) No C) Sometimes

Solution. A)

Problem 4. For any equivalence relation R on any set A, we have A/R ⊂ 2A.
A) True B) False

Solution. A)

Problem 5. If R is an equivalence relation on a set S with n elements, what is the smallest number
of equivalence classes R could have?

A) 0 B) 1 C) n D) 2n E) ∞

Solution. If S = ∅ then A); otherwise B).

Problem 6. If R is an equivalence relation on a set S with n elements, what is the largest number
of equivalence classes R could have?

A) 0 B) 1 C) n D) 2n E) ∞

Solution. C)

Theorem 7. Let R be an equivalence relation on a set S. The equivalence class of an element
x ∈ S is an equivalence class.

Solution. We prove the first axiom. Since R is reflexive, (x, x) ∈ R, so x ∈ [x]. This proves the first
axiom.

We prove the second axiom. Suppose that y, z ∈ S and y ∈ [x] and z ∈ [x]. We must show that
(y, z) ∈ R. By definition of [x], for y and z to be in [x] means that (x, y) ∈ R and (x, z) ∈ R. Since
R is an equivalence relation, it is symmetric, so we may deduce from (x, y) ∈ R that (y, x) ∈ R.
Finally, since R is an equivalence relation, it is transitive, so we may deduce from (y, x) ∈ R and
(x, z) ∈ R that (y, z) ∈ R, which is exactly what we wanted. This proves the second axiom.

Now we prove the third axiom. Suppose that y, z ∈ S and y ∈ [x] and (y, z) ∈ R. We want to
show that z ∈ [x]. By definition of [x], if y ∈ [x] then (x, y) ∈ R. By transitivity of R we deduce
from (x, y) ∈ R and (y, z) ∈ R that (x, z) ∈ R. Finally, by definition of [x] we learn from (x, z) ∈ R
that [x] ∈ R. This proves the third axiom and completes the proof.


