Definition 1. Let A and B be sets. A relation from A to B is a set of ordered pairs (a, b) such that $a \in A$ and $b \in B$. In other words, a relation from A to B is a subset of $A \times B$.

If A is a set then a *relation on* A means a relation from A to A. We often write aRb to mean $(a,b) \in R$.

Definition 2. Suppose that R is a relation on a set A.

We say that R is	if
reflexive	$\forall x \in A, (x, x) \in R$
irreflexive	$\forall x \in A, (x, x) \notin R$
symmetric	$\forall x, y \in A, \ (x, y) \in R \implies (y, x) \in R$
antisymmetric	$\forall x,y \in A, \ (x,y) \in R \land (y,x) \in R \implies x=y$
transitive	$\forall x, y, z \in A, \ (x, y) \in R \land (y, z) \in R \implies (x, z) \in R$
total	$\forall x,y \in A, \ (x,y) \in R \lor (y,x) \in R$
an equivalence relation	if R is reflexive, symmetric, and transitive
a <i>partial order</i>	if R is reflexive, antisymmetric, and transitive
a total order	if R total, antisymmetric, and transitive

Problem 3. The relation $\{(x, y) \in \mathbb{Z} \times \mathbb{Z} : y - x \in \mathbb{N}\}$ is the same as which of the following relations?

 $A) | \qquad B) = \qquad C) \le \qquad D) \ge$

Solution. C)

Problem 4. Let S be a set and let 2^S be the set of all subsets of S. Let R be the subset relation on 2^S :

$$R = \{ (U, V) \in 2^S \times 2^S : U \subset V \}$$

For each of the following questions, answer A) for Yes and B) for No.

- (i) Is R reflexive on 2^S ?
- (ii) Is R irreflexive on 2^S ?
- (iii) Is R symmetric on 2^S ?
- (iv) Is R antisymmetric on 2^S ?
- (v) Is R transitive on 2^S ?
- (vi) Is R total on 2^S ?

Solution. (i) B)

- (ii) **B**)
- (iii) Depends on S: If $S = \emptyset$ it is symmetric, otherwise it is not symmetric.
- (iv) **A**)
- (v) A

(vi) Depends on S: If $|S| \leq 1$ then it is total; otherwise it is not total.

Problem 5. Can a relation be both reflexive and irreflexive?

A) Yes B) No

Solution. A)

Problem 6. Prove that a total relation on a set is reflexive.

Solution. Suppose that R is a total order on a set A. We must prove that for all $x \in A$ we have $(x, x) \in R$. By definition of totality, if $x, y \in A$ then either $(x, y) \in R$ or $(y, x) \in R$. Applying this to x = y, we obtain that either $(x, x) \in R$ or $(x, x) \in R$. That is, $(x, x) \in R$, as desired. \Box

Definition 7. If A is a set we write $\Delta_A = \{(a, a) \in A \times A : a \in A\}$ and call it the *diagonal*. Sometimes this is also called the *identity* of A and is written id_A.

Suppose that R is a relation from A to B. The following relation is called the *inverse relation* of R:

$$R^{-1} = \{ (x, y) \in B \times A : (y, x) \in R \}$$

If A, B, and C are sets and R is a relation from A to B and S is a relation from B to C then $S \circ R$ is the relation from A to C defined as follows:

$$S \circ R = \{(a,c) : \exists b \in B, (a,b) \in R \land (b,c) \in S\}$$