Problem 1. Which of the following is true for *all* finite sets A and B?

- A) $0 \leq |A \cup B| \leq |A|$
- B) $|A| \le |A \cup B| \le |A| + |B|$
- $C) |A| + |B| \le |A \cup B|$
- D) All of the above

Solution. B)

Problem 2. Suppose that A and B are finite sets. State a formula for the size of $|A \cup B|$ in terms of |A|, |B|, and $|A \cap B|$ and prove it is correct.

Solution. The formula is

$$A \cup B| = |A| + |B| - |A \cap B| \tag{(*)}$$

We will prove this formula by induction on the size of A.

Let P(n) be the sentence "For all sets A of size n and all finite sets B, Equation (*) is true." If n = 0 then $A = \emptyset$ and we have

 $|A \cup B| = |B|.$

On the other side of the equation, we have

$$|A| + |B| - |A \cap B| = 0 + |B| - 0 = |B|$$

and this agrees with $|B \cup C|$.

Now we proceed to the induction step. Assuming that P(n) holds for a particular natural number n, we prove it also holds for n + 1. Pick an element x of A and let $A' = A - \{x\}$. Notice that A' has n - 1 elements. We consider two possibilities, depending on whether x is in B:

(i) If $x \notin B$ then the left side of Equation (*) is

$$|A \cup B| = |A' \cup B| + 1$$

The right side is

$$|A| + |B| - |A \cap B| = |A'| + 1 + |B| - |A' \cap B|$$

(Note that $A \cap B = A' \cap B$ because $x \notin B$.) But the induction hypothesis says that $|A' \cup B| = |A'| + |B| - |A' \cap B|$, so the left and right sides of Equation (*) coincide.

(ii) If $x \in B$ then the left side of Equation (*) is

$$|A \cup B| = |A' \cup B|.$$

The right side is

$$|A| + |B| - |A \cap B| = |A'| + 1 + |B| - (|A' \cap B| - 1) = |A'| + |B| - |A' \cap B|.$$

By the induction hypothesis, we know that $|A' \cup B| = |A'| + |B| - |A' \cap B|$, we may conclude that $|A \cup B| = |A| + |B| - |A \cap B|$.

This proves the induction step, so by induction we conclude that for every natural number n, the sentence P(n) is true. That is, for all finite sets A and B, we have $|A \cup B| = |A| + |B| - |A \cap B|$. \Box

Solution. Notice that the three sets A - B, B - A, and $A \cap B$ are pairwise disjoint. Therefore

$$|(A - B) \cup (A \cap B) \cup (B - A)| = |A - B| + |A \cap B| + |B - A|$$

On the other hand,

$$(A - B) \cup (A \cap B) \cup (B - A) = A \cup B$$

and

$$|A - B| = |A| - |A \cap B|$$

 $|B - A| = |B| - |B \cap A|.$

Putting all of this together, we get

$$|A \cup B| = |(A - B) \cup (A \cap B) \cup (B - A)|$$

= |A - B| + |A \cap B| + |B - A|
= |A| - |A \cap B| + |A \cap B| + |B| - |B \cap A|
= |A| + |B| - |A \cap B|,

which is exactly what we wanted.