Theorem 1. There is no integer that is both even and odd.

First proof of Theorem 1. Suppose, for the sake of contradiction, that x were both even and odd.
Then by definition of evenness, x = 2y for some integer y. By definition of oddness, z = 2z + 1 for
some integer z. Thus,

2y =22+1.

This can be rearranged to the equation 1 = 2y — 2z = 2(y — z). As y and z are integers, so is y — z.
By definition of divisibility, this means that 2 divides 1. But we saw earlier that the only integers
dividing 1 are 1 and —1, so this is a contradiction. Our original assumption that x was both even
and odd must have been false. We conclude that no integer x that is both even and odd. O

We will do one more proof using several lemmas:
Lemma 2. If a is an even integer and b is an odd integer then a — b is an odd integer.

Proof. For a to be even means a = 2¢ for some integer ¢ and for b to be odd menas that b = 2d + 1
for some integer d. Therefore

a—b=2—(2d+1)=2c—2d—1=2c—2d—2+1=2(c—d—1)+1.

As ¢ —d — 1 is a sum of integers, it must be an integer, so by the definition of oddness, a — b is
odd. O

Lemma 3. If an integer n is odd then n+ 1 is even.

Proof. If n is odd then by definition we can write n = 2m + 1 for some integer m. Thenn + 1 =
2m+2 = 2(m+1). Note that m+1 is the sum of two integers, hence is an integer. Therefore n + 1
is even by the definition of evenness. O

Lemma 4. The number 1 is not even.

Proof. We will show that, for every integer m, we have 2m # 1. If m < 0 then 2m < 0 < 1 and if
m > 1 then 2m > 2 > 1. Every integer falls into one of these two cases, so no matter what integer
m is, 2m # 1.

This means that 1 is not divisible by 2, so by definition of evenness, 1 is not even. O

Second proof of Theorem 1. Suppose, for the sake of contradiction, that it is possible to find an
integer that is both even and odd. Let x be such an integer. Then 0 = x — x is the difference of
an even number (z) and an odd number (z), hence is odd by Lemma 2. By Lemma 3, this means
that 1 is even, in contradiction to Lemma 4. The original assumption, that it is possible to find an
integer that is both even and odd, is therefore false. O

Problem 5. Which of the two proofs above is better?

Theorem 6. For any integers x and y,

Ifxis... |andyis... | thenx+yis...
even even even
even odd odd
odd even odd
odd odd even .

Problem 7. Suppose z, y, z, and w are odd numbers. Is  + y + z + w even or odd? Justify your
answer with a proof.
A) Even B) Odd C) Depends

Solution. A) O

Problem 8. Is the sum of 5 odd numbers even or odd? Justify your answer with a proof.
A) Even B) Odd C) Depends



Solution. B) O

Problem 9. Is the sum of an odd number of odd numbers even or odd? Justify your answer with

a proof.
A) Even B) Odd C) Depends

Solution. B) O

Problem 10. Suppose I saw a parade of 100 elephants. Every time I saw a pink elephant, the
next elephant in the parade was also pink. What is the smallest possible number of pink elephants
I could have seen?
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Problem 11. Suppose I saw a parade of 100 elephants and at least one of them was pink. Every
time I saw a pink elephant, the next elephant in the parade was also pink. How many pink elephants
did T see?
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Problem 12. Suppose I saw a parade of 100 elephants and the first elephant in the parade was
pink. Every time I saw a pink elephant, the next elephant in the parade was also pink. How many
pink elephants did I see?
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Problem 13. Prove that, for every natural number n,
143454+ 2n+1)=n+1)>2%

Solution. We are supposed to show that, for every natural number n, the formula

n

> @k+1)=(n+1) (%)

k=0

holds. We proceed by induction on n.

Base case: n = 0. In this case, the left side of Equation (x) is 22:0(2]‘3 +1)=2x0+1=1
The right side is (0 + 1)2 = 1. Both sides equal 1, so the formula holds when n = 0.

Induction step: Assuming that Equation (x) holds, we prove that

n+1

> (@k+1)=((n+1)+1)% )

k=0



We work on the left side:

n+1 n
D@E+1) =) (2k+1)+ (2n+1)+1).
k=0 k=0

Using the induction assumption (Equation (x)), this is equal to
(n+1)2+2n+1)+1.
On the other hand, the right side of Equation (T) expands to
(n+1)+1)2=mn+1)*+2n+1)+1.

This agrees with the left side, so we have proved the induction step.
By induction, we conclude that Equation (x) holds for all natural numbers n.



