Theorem 1. There is no integer that is both even and odd.

First proof of Theorem 1. Suppose, for the sake of contradiction, that x were both even and odd. Then by definition of evenness, x = 2y for some integer y. By definition of oddness, x = 2z + 1 for some integer z. Thus,

$$2y = 2z + 1.$$

This can be rearranged to the equation 1 = 2y - 2z = 2(y - z). As y and z are integers, so is y - z. By definition of divisibility, this means that 2 divides 1. But we saw earlier that the only integers dividing 1 are 1 and -1, so this is a contradiction. Our original assumption that x was both even and odd must have been false. We conclude that no integer x that is both even and odd.

We will do one more proof using several lemmas:

Lemma 2. If a is an even integer and b is an odd integer then a - b is an odd integer.

Proof. For a to be even means a = 2c for some integer c and for b to be odd menas that b = 2d + 1 for some integer d. Therefore

$$a - b = 2c - (2d + 1) = 2c - 2d - 1 = 2c - 2d - 2 + 1 = 2(c - d - 1) + 1$$

As c - d - 1 is a sum of integers, it must be an integer, so by the definition of oddness, a - b is odd.

Lemma 3. If an integer n is odd then n + 1 is even.

Proof. If n is odd then by definition we can write n = 2m + 1 for some integer m. Then n + 1 = 2m + 2 = 2(m + 1). Note that m + 1 is the sum of two integers, hence is an integer. Therefore n + 1 is even by the definition of evenness.

Lemma 4. The number 1 is not even.

Proof. We will show that, for every integer m, we have $2m \neq 1$. If $m \leq 0$ then $2m \leq 0 < 1$ and if $m \geq 1$ then $2m \geq 2 > 1$. Every integer falls into one of these two cases, so no matter what integer m is, $2m \neq 1$.

This means that 1 is not divisible by 2, so by definition of evenness, 1 is not even. \Box

Second proof of Theorem 1. Suppose, for the sake of contradiction, that it is possible to find an integer that is both even and odd. Let x be such an integer. Then 0 = x - x is the difference of an even number (x) and an odd number (x), hence is odd by Lemma 2. By Lemma 3, this means that 1 is even, in contradiction to Lemma 4. The original assumption, that it is possible to find an integer that is both even and odd, is therefore false.

Problem 5. Which of the two proofs above is better?

Theorem 6. For any integers x and y,

If x is \ldots	and y is	then $x + y$ is
even	even	even
even	odd	odd
odd	even	odd
odd	odd	even .

Problem 7. Suppose x, y, z, and w are odd numbers. Is x + y + z + w even or odd? Justify your answer with a proof.

A) Even B) Odd C) Depends

Solution. A)

Problem 8. Is the sum of 5 odd numbers even or odd? Justify your answer with a proof. A) Even B) Odd C) Depends Solution. B)

Problem 9. Is the sum of an odd number of odd numbers even or odd? Justify your answer with a proof.

A) Even B) Odd C) Depends

Solution. B)

Problem 10. Suppose I saw a parade of 100 elephants. Every time I saw a pink elephant, the next elephant in the parade was also pink. What is the smallest possible number of pink elephants I could have seen?

A) 0

B) 1

C) Between 2 and 99

D) 100

Solution. A)

Problem 11. Suppose I saw a parade of 100 elephants and at least one of them was pink. Every time I saw a pink elephant, the next elephant in the parade was also pink. How many pink elephants did I see?

- A) 0
- B) 1
- C) Between 2 and 99

D) 100

Solution. B)

Problem 12. Suppose I saw a parade of 100 elephants and the first elephant in the parade was pink. Every time I saw a pink elephant, the next elephant in the parade was also pink. How many pink elephants did I see?

- A) 0
- B) 1
- C) Between 2 and 99
- D) 100

Solution. D)

Problem 13. Prove that, for every natural number n,

 $1 + 3 + 5 + \dots + (2n + 1) = (n + 1)^2.$

Solution. We are supposed to show that, for every natural number n, the formula

$$\sum_{k=0}^{n} (2k+1) = (n+1)^2 \tag{(*)}$$

holds. We proceed by induction on n.

Base case: n = 0. In this case, the left side of Equation (*) is $\sum_{k=0}^{0} (2k+1) = 2 \times 0 + 1 = 1$. The right side is $(0+1)^2 = 1$. Both sides equal 1, so the formula holds when n = 0.

Induction step: Assuming that Equation (*) holds, we prove that

$$\sum_{k=0}^{n+1} (2k+1) = ((n+1)+1)^2.$$
 (†)

We work on the left side:

$$\sum_{k=0}^{n+1} (2k+1) = \sum_{k=0}^{n} (2k+1) + (2(n+1)+1).$$

Using the induction assumption (Equation (*)), this is equal to

$$(n+1)^2 + 2(n+1) + 1.$$

On the other hand, the right side of Equation (\dagger) expands to

$$((n+1)+1)^2 = (n+1)^2 + 2(n+1) + 1.$$

This agrees with the left side, so we have proved the induction step.

By induction, we conclude that Equation (*) holds for all natural numbers n.