Problem 1. All homework must be written in complete English sentences.

- A) Yes, no exceptions
- B) Yes, unless otherwise specified
- C) No, this is a math class not a writing class

Solution. B)

Problem 2. If you can do all of the problems on the homework, you will do well on the exams.A) True B) Not necessarily

Solution. B)

Problem 3. I worked hard on my problem set but got stuck on one problem, so I asked my tutor for help. My tutor showed me how to do the problem and I wrote up the solution myself while we were talking. Is it permissible for me to submit this solution with my homework?

A) Yes B) Yes, but only if I cite my tutor's assistance C) No

Solution. C)

Problem 4. If you can't make it to class you can e-mail your homework to me.

- A) True
- B) False

Solution. A) You may e-mail your homework to me if you follow the rules outlined in the syllabus.

Problem 5. Absence from an exam will be excused with a note from a doctor or the Office of the Dean of Students.

A) Yes B) No C) Depends on the note

Solution. C)

Definition 1. We say that an integer n divides another integer m if there is a third integer c such that m = cn. We also say that m is divisible by n in this situation.

Definition 2. We say that an integer n is *even* if it is divisible by 2.

Definition 3. We call an integer n prime if n > 1 and it has no positive divisors other than itself and 1.

Theorem 4. The only integer that is even and prime is 2.

Proof. First we prove that 2 is both even and prime. Since $2 = 1 \times 2$, we know that 2 is divisible by 2, so 2 is even. To see that it is prime we check that there are no integers m with 1 < m < 2 that divide 2. But there are no integers at all between 1 and 2, so 2 is prime.

Now let us suppose that n is an integer that is both even and prime. Since n is even, n is divisible by 2. Since n is prime, the only positive integers that divide n are 1 and n. Since 2 is a positive integer dividing n and $2 \neq 1$, we must therefore have 2 = n. This shows that whenever n is both even and prime, n = 2, which is exactly what we wanted.