Math 2001 Assignment 35

Your name here

Due Monday, November 17

Problem 1. Scheinerman, $\S24$, #11

Problem 2. Scheinerman, $\S24$, #14

Problem 3. Scheinerman, §24, #18. Please use the definition from class: A function $f : A \to B$ is a bijection if there is a function $g : B \to A$ such that g(f(a)) = a for every $a \in A$ and f(g(b)) = b for every $b \in B$.

Problem 4. Scheinerman, §24, #19ab

Problem 5. Scheinerman, $\S24$, #23

Problem 6. Let S be a set and k a natural number. In class we introducted the following notation:

- (i) S^k is the set of all lists of length k chosen from the elements of S.
- (ii) $(S)_k$ is the set of all lists of length k without repetition chosen from the elements of S.

Do the following:

- (a) Give an example of a set S where S and $(S)_2$ are not disjoint.
- (b) Prove that $|S^1| = |S|$ by constructing a bijection.
- (c) Prove that $|S^2| = |(S)_2| + |(S)_1|$ by constructing bijections. (Hint: Find a partition of S^2 into two disjoint subsets of sizes $|(S)_2|$ and $|(S)_1|$. This proof was sketched at the end of class; please fill in the details.)
- (d) Prove that $|S^3| = |(S)_3| + 3|(S)_2| + |(S)_1|$ by constructing bijections. (Hint: Break S^3 into 5 subsets.)
- (e) Conjecture a formula for $|S^4|$ in terms of $|(S)_4|$, $|(S)_3|$, $|(S)_2|$, and $|(S)_1|$.