Math 2001 Assignment 29

Your name here

October 31, 2014

Problem 1. Scheinerman, $\S15$, #1

Problem 2. Scheinerman, $\S15$, #2

Problem 3. Let *n* be an integer. Two integer *x* and *y* are said to be congruent modulo *n* if n|(x - y). For each integer *x*, let [x] be the equivalence class of *x* in \mathbb{Z} with respect to congruence modulo *n*.

If A and B are subsets of \mathbb{Z} , define

$$AB = \{ab : a \in A \land b \in B\}.$$

Prove that, for any $x, y \in \mathbb{Z}$, the following formula holds:

$$[x][y] = [xy].$$

(Hint: You may want to refer to the proof that [x] + [y] = [x + y] in the partial solutions to Assignment 28.)

Problem 4. Let $\mathbb{Z}/n\mathbb{Z}$ be the set of equivalence classes of congruence modulo n on the integers. We say that $\mathbb{Z}/n\mathbb{Z}$ is a *field* if n > 1 and, for every $[x] \in \mathbb{Z}/n\mathbb{Z}$ other than [x] = [0], there is a $[y] \in \mathbb{Z}/n\mathbb{Z}$ such that [x][y] = [1]. (For example, in $\mathbb{Z}/19\mathbb{Z}$, we have [3][13] = [39] = [1].)

For which values of n below is $\mathbb{Z}/n\mathbb{Z}$ a field?

- (i) n = 2
- (ii) n = 3
- (iii) n = 4
- (iv) n = 5
- (v) n = 6
- (vi) n = 7

Can you conjecture a pattern concerning when $\mathbb{Z}/n\mathbb{Z}$ is a field?