Math 2001 Assignment 28

Your name here

October 31, 2014

Problem 1. Scheinerman, $\S15$, #6

Problem 2. Suppose that *R* is an equivalence relation on a set *A* and *B* is a subset of *A*. Prove that $R \cap (B \times B)$ is an equivalence relation on *B*.

Problem 3. Scheinerman, $\S15$, #17. In this problem you are being asked to give a set S that contains exactly one member of each equivalence class of the similarity relation on triangles.

Problem 4. Let *n* be an integer. Two integer *x* and *y* are said to be congruent modulo *n* if n|(x - y). For each integer *x*, let [x] be the equivalence class of *x* in \mathbb{Z} with respect to congruence modulo *n*.

If A and B are subsets of \mathbb{Z} , define

$$A + B = \{a + b : a \in A \land b \in B\}$$
$$AB = \{ab : a \in A \land b \in B\}.$$

Prove that, for any $x, y \in \mathbb{Z}$, the following formulas hold:

$$[x] + [y] = [x + y]$$

 $[x][y] = [xy].$

Solution. Here is a proof of the equation [x] + [y] = [x + y].

We prove that [x] + [y] = [x + y]. To prove that these two sets are equal, we need to show that every $z \in [x] + [y]$ is also in [x + y] and vice versa.

Suppose first that $z \in [x] + [y]$. We will show that $z \in [x + y]$. By definition of [x] + [y], having $z \in [x] + [y]$ means that z = a + b for some $a \in [x]$ and $b \in [y]$. By definition of [x], we know that n|a - x, and by definition of [y], we know that n|b - y. By definition of divisibility, there are therefore integers u and vsuch that a - x = un and b - y = vn. Then

$$x + y = (a - un) + (b - vn) = (a + b) - (u + v)n$$

Thus,

$$x + y - z = x + y - (a + b) = -(u + v)n$$

so n|(x+y-z). Thus, $x+y \equiv z \pmod{n}$, so $z \in [x+y]$. This shows that any $z \in [x] + [y]$ is also in [x+y].

Now suppose that $z \in [x + y]$. This means that n|(x + y - z) so there must be an integer w such that x + y - z = nw. Then z = x + (y - nw). Note that $x \equiv x \pmod{n}$ and $y \equiv y - nw \pmod{n}$ so $x \in [x]$ and $y - nw \in [y]$. Therefore

$$z = x + (y - nw) \in [x] + [y]$$

This shows that any $z \in [x + y]$ is in [x] + [y].

Putting the two paragraphs together, we conclude that [x] + [y] = [x + y]. \Box