Math 2001-003 Fall 2014 Midterm Exam 2 Solutions

Thursday, November 6, 2014

Definition 1. An integer m is said to **divide** an integer n if there is an integer c such that n = cm.

Two integers a and b are said to be **congruent** modulo an integer n if n|(b-a). We write $a \equiv b \pmod{n}$ in this case.

Definition 2. The number of elements of a set X is denoted |X| and is known as the **cardinality** or size of X.

The union of two sets X and Y is the set $X \cup Y$ consisting of all objects that are elements of X or of Y. The intersection of X and Y is the set $X \cap Y$ consisting of all objects that are elements of both X and Y.

The **powerset** of a set X is the set of all subsets of X; it is denoted 2^X .

The difference X - Y of sets X and Y consists of all elements of X that are not elements of Y. The symmetric difference $X \Delta Y$ of X and Y is $(X - Y) \cup (Y - X) = (X \cup Y) - (X \cap Y)$.

We say that X is a **subset** of Y, and write $X \subseteq Y$, if every member of X is also a member of Y. Two sets X and Y are said to be disjoint if $X \cap Y = \emptyset$.

Definition 3. Suppose that X and Y are sets. A relation from X to Y is a set R whose elements are ordered pairs (x, y) with $x \in X$ and $y \in Y$.

We say that R is	if
reflexive	$\forall x \in A, (x, x) \in R$
irreflexive	$\forall x \in A, (x, x) \notin R$
symmetric	$\forall x,y \in A, (x,y) \in R \implies (y,x) \in R$
${f antisymmetric}$	$\forall x,y \in A, (x,y) \in R \land (y,x) \in R \implies x=y$
transitive	$\forall x, y, z \in A, \ (x, y) \in R \land (y, z) \in R \implies (x, z) \in R$
total	$\forall x,y \in A, \ (x,y) \in R \lor (y,x) \in R$
an equivalence relation	if R is reflexive, symmetric, and transitive
a partial order	if R is reflexive, antisymmetric, and transitive
a total order	if R total, antisymmetric, and transitive

If R is a total order on a set A then an element $a \in A$ is said to be **minimal** or the **least element** of A if, for all $b \in A$, we have $(a, b) \in R$.

Theorem 4. If A and B are finite sets then

$$|A \cup B| = |A| + |B| - |A \cap B|$$

 $|A - B| = |A| - |A \cap B|.$

Problem 1. (6 points) Identify an equivalence relation R on a set A with the following equivalence classes:

$$\{ \varnothing, 1 \}$$
$$\{ \{ \varnothing \}, 2 \}$$

No justification required.

Solution. Let $A = \{\emptyset, \{\emptyset\}, 1, 2\}$ and define

$$R = \{(\emptyset, \emptyset), (\emptyset, 1), (1, \emptyset), (1, 1), (\{\emptyset\}, \{\emptyset\}), (\{\emptyset\}, 2), (2, \{\emptyset\}), (2, 2)\}$$

Problem 2. (6 points) Construct a set A and a relation R on A that is reflexive, irreflexive, symmetric, antisymmetric, transitive, and total. Justify your answer. (It is possible to give a complete justification in one sentence.)

Solution. Let $A = R = \emptyset$. All of the desired properties are universally quantified over elements of A, so they hold vacuously.

Problem 3. (10 points) Suppose that $a \equiv b \pmod{n}$ and that m|n. Prove that $a \equiv b \pmod{m}$.

Solution. Suppose that $a \equiv b \pmod{n}$ and that m|n. By definition of congruence modulo n, this means that n|(b-a), which means that there is an integer k such that kn = b - a, by definition of divisibility. Also by definition of divisibility, there is an integer ℓ such that $n = \ell m$. Substituting this into kn = b - a, we get $k\ell m = b - a$. But $k\ell$ is a product of integers, hence is an integer, so m|(b-a), by definition of divisibility. By definition of congruence modulo m, we conclude that $a \equiv b \pmod{m}$.

Problem 4. (8 points) Let $A = \{1, 2, 3, 4\}$ and let R be the following relation on A:

$$R = \{(1,1), (1,3), (3,1), (3,4)\}$$

For each of the properties named below, indicate the **smallest** set R' such that $R \cup R'$ is a relation on A with the named property. No justification required.

(i) reflexive

Solution.
$$R' = \{(2,2), (3,3), (4,4)\}$$

(ii) symmetric

Solution. $R' = \{(4,3)\}$

(iii) transitive

Solution. $R' = \{(1,4), (3,3)\}$

(iv) equivalence relation

Solution.
$$R' = \{(1,4), (2,2), (3,3), (4,1), (4,3), (4,4)\}$$

Problem 5. (14 points)

(i) (7 points) Prove that if x and y are real numbers such that xy = 0 then x = 0 or y = 0.

Solution. Suppose, for the sake of contradiction, that there are real numbers x and y such that xy = 0 but $x \neq 0$ and $y \neq 0$. Since $x \neq 0$, we may divide by x on both sides of xy = 0 to get $y = x^{-1} \times 0 = 0$. This contradicts the assumption $y \neq 0$. The original assumption, that there are real numbers x and y such that xy = 0 but $x \neq 0$ and $y \neq 0$ must therefore have been false. We conclude that, for all real numbers x and y, if xy = 0 then x = 0 or y = 0.

(ii) (7 points) Disprove that if x, y, and n are integers such that $xy \equiv 0 \pmod{n}$ then $x \equiv 0 \pmod{n}$ or $y \equiv 0 \pmod{n}$.

Solution. Let n = 6 and let x = 2 and let y = 3. Then $x \not\equiv 0 \pmod{6}$ and $y \not\equiv 0 \pmod{6}$ since 6 does not divide 2 or 3. On the other hand,

$$2 \times 3 = 6 \equiv 0 \pmod{6}.$$

Therefore n = 6, x = 2, and y = 3 are a counterexample.

Problem 6. (8 points) Prove that for any finite sets A and B,

$$|A \Delta B| = |A| + |B| - 2|A \cap B|$$

Solution. By definition,

$$|A \Delta B| = |(A \cup B) - (A \cap B)|.$$

Note that $A \cap B \subset A \cup B$. Indeed, if $x \in A \cap B$ then $x \in A$ and $x \in B$, so of course $x \in A$ or $x \in B$, which is what it means for x to be in $A \cup B$. Therefore, $(A \cup B) \cap (A \cap B) = (A \cap B)$ so by Theorem 4,

$$|(A \cup B) - (A \cap B)| = |A \cup B| - |(A \cup B) \cap (A \cap B)| = |A \cup B| - |A \cap B|.$$

On the other hand, also by Theorem 4, we know that

$$A\cup B|=|A|+|B|-|A\cap B|.$$

Putting all of this together, we get

$$\begin{split} |A \Delta B| &= |(A \cup B) - (A \cap B)| \\ &= |A \cup B| - |A \cap B| \\ &= |A| + |B| - |A \cap B| - |A \cap B| \\ &= |A| + |B| - 2|A \cap B|, \end{split}$$

exactly as desired.

Problem 7. (12 points) Prove that $n! < n^n$ for every integer n > 1. You may use the following facts about real numbers p, q, and a without proof:

- (i) If $0 \le p < q$ then $p^n < q^n$ for all $n \ge 1$.
- (ii) If p < q and a > 0 then ap < aq.

Solution. The proof is by induction on n, with the base case n = 2. When n = 2, we have 2! = 2 and $2^2 = 4$ so $2! = 2 < 4 = 2^2$, which gives the base case.

Now we proceed by induction. Assume that $n \in \mathbb{N}$ and $n \geq 2$ and $n! < n^n$. We want to prove that $(n+1)! < (n+1)^{n+1}$. By definition of the factorial, we have $(n+1)! = (n+1) \times n!$. On the other hand, the induction hypothesis says that $n! < n^n$. As 0 < n < n+1, Fact (i) says that $n^n < (n+1)^n$. Fact (ii) then implies that $(n+1) \times n^n < (n+1) \times (n+1)^n$ since n+1 > 0. Putting these together, we get

$$(n+1)! = (n+1) \times n! < (n+1) \times n^n < (n+1) \times (n+1)^n = (n+1)^{n+1}$$

which is exactly what we wanted.

Problem 8. (20 points)

(i) (14 points) Suppose that S is a non-empty finite set and \prec is a total order on S. Prove that S has a least element with respect to \prec . (Hint: Use induction. You may use without proof that the restriction of a total order to a subset is a total order.)

Solution. The proof is by induction on the size of S. The base case is |S| = 1. In that case, S has just one element—call it x. We check that x is the least element of S. Since \prec is a total order, it is reflexive, so $x \prec x$. Since x is the only element of S, this means that $\forall y \in S, x \prec y$, as desired.

For the sake of induction, assume that a total order on a set with n elements has a least element. We prove that a total order on a set with n+1 elements also has a least element. Let S be a set with n+1 elements. Since n is a natural number, |S| > 0, so we may choose an element $x \in S$. Then $S - \{x\}$ has n elements. Moreover, the restriction of \prec to $S - \{x\}$ is a total order so there is an element—call it y—of $S - \{x\}$ that is least in $S - \{x\}$ with respect to \prec .

Now there are two possibilities. Since \prec is a total order, either $y \prec x$ or $x \prec y$.

- (i) If $y \prec x$ then y is the least element of S. We verify this: Suppose that z is an element of S. Either z = x or $z \in S \{x\}$. If z = x then $y \prec z$ by assumption. If $z \in S \{x\}$ then $y \prec z$ by the assumption that y was a minimal element of $S \{x\}$.
- (ii) If $x \prec y$ then x is the least element of S. We verify this: Suppose that z is an element of S. Either z = x or $z \in S \{x\}$. If z = x then $x \prec z$ because \prec is reflexive. If $z \in S \{x\}$ then $x \prec y \prec z$ $(x \prec y)$ by assumption and $y \prec z$ because y is the minimal element of $S \{x\}$ and $z \in S \{x\}$. But \prec is transitive, so $x \prec z$. Thus x is minimal.

In either case there is a minimal element of S with respect to \prec . This completes the induction step and the proof.

(ii) (6 points) Show that a total order on an infinite set does not necessarily have a least element.

Solution. The set \mathbb{Z} with the relation \leq is an example of a total order on an infinite set without a minimal element.