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Math 2001-003 Fall 2014
Midterm Exam 2 Solutions

Thursday, November 6, 2014

Definition 1. An integer m is said to divide an integer n if there is an integer ¢ such that n = cm.
Two integers a and b are said to be congruent modulo an integer n if n|(b—a). We write a = b (mod n)
in this case.

Definition 2. The number of elements of a set X is denoted | X| and is known as the cardinality or size
of X.

The union of two sets X and Y is the set X UY consisting of all objects that are elements of X or of Y.
The intersection of X and Y is the set X NY consisting of all objects that are elements of both X and Y.

The powerset of a set X is the set of all subsets of X: it is denoted 2%.

The difference X — Y of sets X and Y consists of all elements of X that are not elements of Y. The
symmetric difference X AY of X and Vis (X -Y)U(Y - X)=(XUY)—-(XNY).

We say that X is a subset of Y, and write X C Y, if every member of X is also a member of Y. Two
sets X and Y are said to be disjoint if X NY = @.

Definition 3. Suppose that X and Y are sets. A relation from X to Y is a set R whose elements are
ordered pairs (z,y) with x € X and y € Y.

We say that R is ... if ...

reflexive Vee A, (z,x) €R

irreflexive Vee A, (z,2) ¢ R

symmetric Vae,y€e A, (z,y) € R = (y,2) €R
antisymmetric Va,y€ A, (z,y) € RA(y,z) ER = z =y
transitive Va,y,z€ A, (v,y) e RAN(y,2) € R = (z,2) € R
total Va,ye A, (z,y) € RV (y,x) € R

an equivalence relation if R is reflexive, symmetric, and transitive

a partial order if R is reflexive, antisymmetric, and transitive

a total order if R total, antisymmetric, and transitive

If R is a total order on a set A then an element a € A is said to be minimal or the least element of A if,
for all b € A, we have (a,b) € R.

Theorem 4. If A and B are finite sets then

|AUB| = |A| + |B| - |AN B|
|A—B|=|A] - |AnB.



Problem 1. (6 points) Identify an equivalence relation R on a set A with the following equivalence classes:

{2,1}
{{}.2}

No justification required.
Solution. Let A ={2,{@},1,2} and define
R ={(2,9),(2,1),(1,9),(1,1), {2},{2}), {2},2), (2,{2}), (2,2)}
O

Problem 2. (6 points) Construct a set A and a relation R on A that is reflexive, irreflexive, symmetric,
antisymmetric, transitive, and total. Justify your answer. (It is possible to give a complete justification in
one sentence.)

Solution. Let A = R = @. All of the desired properties are universally quantified over elements of A, so
they hold vacuously. O

Problem 3. (10 points) Suppose that a = b (mod n) and that m|n. Prove that a = b (mod m).

Solution. Suppose that a = b (mod n) and that m|n. By definition of congruence modulo n, this means
that n|(b— a), which means that there is an integer k such that kn = b — a, by definition of divisibility. Also
by definition of divisibility, there is an integer ¢ such that n = ¢m. Substituting this into kn = b — a, we get
kfm = b — a. But k¢ is a product of integers, hence is an integer, so m/|(b — a), by definition of divisibility.
By definition of congruence modulo m, we conclude that a = b (mod m). O

Problem 4. (8 points) Let A = {1,2,3,4} and let R be the following relation on A:

R= {(17 1)’ (L 3)? (3, 1)7 (374)}

For each of the properties named below, indicate the smallest set R’ such that R U R is a relation on A
with the named property. No justification required.

(i) reflexive

Solution. R' ={(2,2),(3,3),(4,4)} O
(ii) symmetric

Solution. R = {(4,3)} O
(iii) transitive

Solution. R ={(1,4),(3,3)} O
(iv) equivalence relation

Solution. R' ={(1,4),(2,2),(3,3),(4,1),(4,3),(4,4)} O

Problem 5. (14 points)

(i) (7 points) Prove that if z and y are real numbers such that xy = 0 then x =0 or y = 0.
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Solution. Suppose, for the sake of contradiction, that there are real numbers x and y such that zy =0
but  # 0 and y # 0. Since = # 0, we may divide by x on both sides of xy = 0 to get y =z~ ! x 0 = 0.
This contradicts the assumption y # 0. The original assumption, that there are real numbers x and y
such that zy = 0 but « # 0 and y # 0 must therefore have been false. We conclude that, for all real
numbers x and y, if xy =0 then x =0 or y = 0. O

(ii) (7 points) Disprove that if z, y, and n are integers such that zy = 0 (mod n) then 2 =0 (mod n) or
y =0 (mod n).

Solution. Let n =6 and let z = 2 and let y = 3. Then x # 0 (mod 6) and y # 0 (mod 6) since 6 does
not divide 2 or 3. On the other hand,
2x3=6=0 (mod 6).

Therefore n = 6, x = 2, and y = 3 are a counterexample. O

Problem 6. (8 points) Prove that for any finite sets A and B,
|AAB| = |A|+|B| - 2|ANB|.
Solution. By definition,
|[AAB|=|(AUB)— (AN B)|.

Note that AN B C AU B. Indeed, if x € AN B then z € A and x € B, so of course x € A or x € B, which
is what it means for x to be in AU B. Therefore, (AU B) N (AN B) = (AN B) so by Theorem 4,

[(AUB) - (ANB)|=|AUB|-|[(AUB)N(ANB)|=]AUB| - |ANB.
On the other hand, also by Theorem 4, we know that
|AUB| = |A|+|B| - [ANB|.
Putting all of this together, we get
|[AAB|=|(AUB) - (AN B)|

=|AUB|—|AN B

=|A|+ |B|-]ANB|—-|ANB]

= |A]+[B| -2|AN B|,
exactly as desired. O

Problem 7. (12 points) Prove that n! < n™ for every integer n > 1. You may use the following facts about
real numbers p, ¢, and a without proof:

(i) If 0 < p < ¢ then p™ < ¢" for all n > 1.
(ii) If p < g and a > 0 then ap < agq.

Solution. The proof is by induction on n, with the base case n = 2. When n = 2, we have 2! = 2 and 22 = 4
so 2! = 2 < 4 = 22, which gives the base case.

Now we proceed by induction. Assume that n € N and n > 2 and n! < n”. We want to prove that
(n+1)! < (n+1)"*L. By definition of the factorial, we have (n+1)! = (n+ 1) x nl. On the other hand, the
induction hypothesis says that n! < n". As 0 <n <n+ 1, Fact (i) says that n” < (n+ 1)". Fact (ii) then
implies that (n + 1) x n™ < (n4+ 1) x (n 4+ 1)™ since n + 1 > 0. Putting these together, we get

n+Dl=m+)xnl <+ xn"<m+1)xn+1)"=(n+1)""

which is exactly what we wanted. O



Problem 8. (20 points)

(1)

(14 points) Suppose that S is a non-empty finite set and < is a total order on S. Prove that S has a
least element with respect to <. (Hint: Use induction. You may use without proof that the restriction
of a total order to a subset is a total order.)

Solution. The proof is by induction on the size of S. The base case is |S| = 1. In that case, S has
just one element—call it . We check that z is the least element of S. Since < is a total order, it is
reflexive, so © < x. Since z is the only element of S, this means that Vy € 5,z < y, as desired.

For the sake of induction, assume that a total order on a set with n elements has a least element. We
prove that a total order on a set with n+ 1 elements also has a least element. Let S be a set with n+1
elements. Since n is a natural number, |S| > 0, so we may choose an element € S. Then S — {x}
has n elements. Moreover, the restriction of < to S — {z} is a total order so there is an element—call
it y—of S — {z} that is least in S — {z} with respect to <.

Now there are two possibilities. Since < is a total order, either y < x or = < y.

(i) If y < x then y is the least element of S. We verify this: Suppose that z is an element of S.
Either z =z or z € S — {z}. If 2z = z then y < z by assumption. If z € § — {2} then y < z by
the assumption that y was a minimal element of S — {z}.

(ii) If z < y then x is the least element of S. We verify this: Suppose that z is an element of S. Either
z=xorz€eS—{z}. If 2=z then x < z because < is reflexive. If z € S — {2z} then z <y < 2
(x < y by assumption and y < z because y is the minimal element of S — {z} and z € S — {z}).
But < is transitive, so x < z. Thus z is minimal.

In either case there is a minimal element of S with respect to <. This completes the induction step
and the proof. 0

(6 points) Show that a total order on an infinite set does not necessarily have a least element.

Solution. The set Z with the relation < is an example of a total order on an infinite set without a
minimal element. O



