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Math 2001-003 Fall 2014

Midterm Exam 2 Solutions

Thursday, November 6, 2014

Definition 1. An integer m is said to divide an integer n if there is an integer c such that n = cm.
Two integers a and b are said to be congruent modulo an integer n if n|(b−a). We write a ≡ b (mod n)

in this case.

Definition 2. The number of elements of a set X is denoted |X| and is known as the cardinality or size
of X.

The union of two sets X and Y is the set X ∪Y consisting of all objects that are elements of X or of Y .
The intersection of X and Y is the set X ∩ Y consisting of all objects that are elements of both X and Y .

The powerset of a set X is the set of all subsets of X; it is denoted 2X .
The difference X − Y of sets X and Y consists of all elements of X that are not elements of Y . The

symmetric difference X ∆Y of X and Y is (X − Y ) ∪ (Y −X) = (X ∪ Y )− (X ∩ Y ).
We say that X is a subset of Y , and write X ⊆ Y , if every member of X is also a member of Y . Two

sets X and Y are said to be disjoint if X ∩ Y = ∅.

Definition 3. Suppose that X and Y are sets. A relation from X to Y is a set R whose elements are
ordered pairs (x, y) with x ∈ X and y ∈ Y .

We say that R is . . . if . . .
reflexive ∀ x ∈ A, (x, x) ∈ R
irreflexive ∀ x ∈ A, (x, x) 6∈ R
symmetric ∀ x, y ∈ A, (x, y) ∈ R =⇒ (y, x) ∈ R
antisymmetric ∀ x, y ∈ A, (x, y) ∈ R ∧ (y, x) ∈ R =⇒ x = y
transitive ∀ x, y, z ∈ A, (x, y) ∈ R ∧ (y, z) ∈ R =⇒ (x, z) ∈ R
total ∀ x, y ∈ A, (x, y) ∈ R ∨ (y, x) ∈ R
an equivalence relation if R is reflexive, symmetric, and transitive
a partial order if R is reflexive, antisymmetric, and transitive
a total order if R total, antisymmetric, and transitive

If R is a total order on a set A then an element a ∈ A is said to be minimal or the least element of A if,
for all b ∈ A, we have (a, b) ∈ R.

Theorem 4. If A and B are finite sets then

|A ∪B| = |A|+ |B| − |A ∩B|
|A−B| = |A| − |A ∩B|.



Problem 1. (6 points) Identify an equivalence relation R on a set A with the following equivalence classes:

{∅, 1}
{{∅}, 2}

No justification required.

Solution. Let A = {∅, {∅}, 1, 2} and define

R = {(∅,∅), (∅, 1), (1,∅), (1, 1), ({∅}, {∅}), ({∅}, 2), (2, {∅}), (2, 2)}

Problem 2. (6 points) Construct a set A and a relation R on A that is reflexive, irreflexive, symmetric,
antisymmetric, transitive, and total. Justify your answer. (It is possible to give a complete justification in
one sentence.)

Solution. Let A = R = ∅. All of the desired properties are universally quantified over elements of A, so
they hold vacuously.

Problem 3. (10 points) Suppose that a ≡ b (mod n) and that m|n. Prove that a ≡ b (mod m).

Solution. Suppose that a ≡ b (mod n) and that m|n. By definition of congruence modulo n, this means
that n|(b− a), which means that there is an integer k such that kn = b− a, by definition of divisibility. Also
by definition of divisibility, there is an integer ` such that n = `m. Substituting this into kn = b− a, we get
k`m = b− a. But k` is a product of integers, hence is an integer, so m|(b− a), by definition of divisibility.
By definition of congruence modulo m, we conclude that a ≡ b (mod m).

Problem 4. (8 points) Let A = {1, 2, 3, 4} and let R be the following relation on A:

R = {(1, 1), (1, 3), (3, 1), (3, 4)}

For each of the properties named below, indicate the smallest set R′ such that R ∪ R′ is a relation on A
with the named property. No justification required.

(i) reflexive

Solution. R′ = {(2, 2), (3, 3), (4, 4)}

(ii) symmetric

Solution. R′ = {(4, 3)}

(iii) transitive

Solution. R′ = {(1, 4), (3, 3)}

(iv) equivalence relation

Solution. R′ = {(1, 4), (2, 2), (3, 3), (4, 1), (4, 3), (4, 4)}

Problem 5. (14 points)

(i) (7 points) Prove that if x and y are real numbers such that xy = 0 then x = 0 or y = 0.



Name:

Solution. Suppose, for the sake of contradiction, that there are real numbers x and y such that xy = 0
but x 6= 0 and y 6= 0. Since x 6= 0, we may divide by x on both sides of xy = 0 to get y = x−1× 0 = 0.
This contradicts the assumption y 6= 0. The original assumption, that there are real numbers x and y
such that xy = 0 but x 6= 0 and y 6= 0 must therefore have been false. We conclude that, for all real
numbers x and y, if xy = 0 then x = 0 or y = 0.

(ii) (7 points) Disprove that if x, y, and n are integers such that xy ≡ 0 (mod n) then x ≡ 0 (mod n) or
y ≡ 0 (mod n).

Solution. Let n = 6 and let x = 2 and let y = 3. Then x 6≡ 0 (mod 6) and y 6≡ 0 (mod 6) since 6 does
not divide 2 or 3. On the other hand,

2× 3 = 6 ≡ 0 (mod 6).

Therefore n = 6, x = 2, and y = 3 are a counterexample.

Problem 6. (8 points) Prove that for any finite sets A and B,

|A ∆ B| = |A|+ |B| − 2|A ∩B|.

Solution. By definition,

|A ∆ B| = |(A ∪B)− (A ∩B)|.

Note that A ∩B ⊂ A ∪B. Indeed, if x ∈ A ∩B then x ∈ A and x ∈ B, so of course x ∈ A or x ∈ B, which
is what it means for x to be in A ∪B. Therefore, (A ∪B) ∩ (A ∩B) = (A ∩B) so by Theorem 4,

|(A ∪B)− (A ∩B)| = |A ∪B| − |(A ∪B) ∩ (A ∩B)| = |A ∪B| − |A ∩B|.

On the other hand, also by Theorem 4, we know that

|A ∪B| = |A|+ |B| − |A ∩B|.

Putting all of this together, we get

|A ∆ B| = |(A ∪B)− (A ∩B)|
= |A ∪B| − |A ∩B|
= |A|+ |B| − |A ∩B| − |A ∩B|
= |A|+ |B| − 2|A ∩B|,

exactly as desired.

Problem 7. (12 points) Prove that n! < nn for every integer n > 1. You may use the following facts about
real numbers p, q, and a without proof:

(i) If 0 ≤ p < q then pn < qn for all n ≥ 1.

(ii) If p < q and a > 0 then ap < aq.

Solution. The proof is by induction on n, with the base case n = 2. When n = 2, we have 2! = 2 and 22 = 4
so 2! = 2 < 4 = 22, which gives the base case.

Now we proceed by induction. Assume that n ∈ N and n ≥ 2 and n! < nn. We want to prove that
(n+ 1)! < (n+ 1)n+1. By definition of the factorial, we have (n+ 1)! = (n+ 1)×n!. On the other hand, the
induction hypothesis says that n! < nn. As 0 < n < n + 1, Fact (i) says that nn < (n + 1)n. Fact (ii) then
implies that (n + 1)× nn < (n + 1)× (n + 1)n since n + 1 > 0. Putting these together, we get

(n + 1)! = (n + 1)× n! < (n + 1)× nn < (n + 1)× (n + 1)n = (n + 1)n+1

which is exactly what we wanted.



Problem 8. (20 points)

(i) (14 points) Suppose that S is a non-empty finite set and ≺ is a total order on S. Prove that S has a
least element with respect to ≺. (Hint: Use induction. You may use without proof that the restriction
of a total order to a subset is a total order.)

Solution. The proof is by induction on the size of S. The base case is |S| = 1. In that case, S has
just one element—call it x. We check that x is the least element of S. Since ≺ is a total order, it is
reflexive, so x ≺ x. Since x is the only element of S, this means that ∀ y ∈ S , x ≺ y, as desired.

For the sake of induction, assume that a total order on a set with n elements has a least element. We
prove that a total order on a set with n+1 elements also has a least element. Let S be a set with n+1
elements. Since n is a natural number, |S| > 0, so we may choose an element x ∈ S. Then S − {x}
has n elements. Moreover, the restriction of ≺ to S − {x} is a total order so there is an element—call
it y—of S − {x} that is least in S − {x} with respect to ≺.

Now there are two possibilities. Since ≺ is a total order, either y ≺ x or x ≺ y.

(i) If y ≺ x then y is the least element of S. We verify this: Suppose that z is an element of S.
Either z = x or z ∈ S − {x}. If z = x then y ≺ z by assumption. If z ∈ S − {x} then y ≺ z by
the assumption that y was a minimal element of S − {x}.

(ii) If x ≺ y then x is the least element of S. We verify this: Suppose that z is an element of S. Either
z = x or z ∈ S − {x}. If z = x then x ≺ z because ≺ is reflexive. If z ∈ S − {x} then x ≺ y ≺ z
(x ≺ y by assumption and y ≺ z because y is the minimal element of S − {x} and z ∈ S − {x}).
But ≺ is transitive, so x ≺ z. Thus x is minimal.

In either case there is a minimal element of S with respect to ≺. This completes the induction step
and the proof.

(ii) (6 points) Show that a total order on an infinite set does not necessarily have a least element.

Solution. The set Z with the relation ≤ is an example of a total order on an infinite set without a
minimal element.


