Math 2001-003 Fall 2014 Midterm Exam 1 Solutions

Tuesday, September 23, 2014

Problem 1. (3 points) Use a truth table to demonstrate that $\neg X \lor Y$ and $X \implies Y$ are logically equivalent. Solution.

X	Y	$\neg X$	$\neg X \lor Y$	$X \implies Y$
T	T	F	Т	Т
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

The truth values in last two columns are identical, so $\neg X \lor Y$ and $X \implies Y$ are logically equivalent. \Box

Problem 2. (2 points) Which of the following are logical opposites of $X \implies Y$? No justification required. (Scoring: 1/2 point for each correct answer circled, 1/2 point for each incorrect answer not circled.)

(A)
$$Y \implies X$$
 (B) $\neg Y \implies \neg X$ (C) $X \land \neg Y$ (D) $X \lor \neg Y$

Solution. (C)

Problem 3. (1 point) The empty set is an element of every set. No justification required.

(A) True (B) False

Solution. False

Problem 4. (2 points) Write down the elements of the power set of $\{\{\emptyset\}, 1\}$.

Solution. $\emptyset, \{\{\emptyset\}\}, \{1\}, \{\{\emptyset\}, 1\}$

Problem 5. (3 points) Compute the following sum:

$$\sum_{n=0}^{100} \prod_{k=n}^{2} k$$

Your answer should be a single number. Justification is not required, but partial credit will be given for incorrect answers that are partially justified.

Solution.

$$\sum_{n=0}^{100} \prod_{k=n}^{2} k = \sum_{n=0}^{2} \prod_{k=n}^{2} k + \sum_{n=3}^{100} 1$$
$$= 0 \times 1 \times 2 + 1 \times 2 + 2 + 98$$
$$= 102$$

Solution. Here is the same solution, written another way:

$$\sum_{n=0}^{100} \prod_{k=n}^{2} k = \prod_{k=0}^{2} k + \prod_{k=1}^{2} k + \prod_{k=2}^{2} k + \prod_{k=3}^{2} k + \dots + \prod_{k=100}^{2} k$$
$$= 0 \times 1 \times 2 + 1 \times 2 + 2 + 1 + \dots + 1$$

Observe that there number 1 is added 98 times (once for every k between 3 and 100, inclusive) yielding a total of

$$0 + 2 + 2 + 98 = 102.$$

Problem 6. (5 points) A function f from a real vector space V to another real vector space is said to be *linear* if the following sentence is true:

$$\left(\forall \lambda \in \mathbb{R}, \forall x \in V, f(\lambda x) = \lambda f(x)\right) \land \left(\forall x \in V, \forall y \in V, f(x+y) = f(x) + f(y)\right)$$

Write a symbolic sentence meaning "f is not linear" using only quantifiers (\forall, \exists) , logical connectives other than negation (\land, \lor) , set membership (\in) , equality and inequality $(=, \neq)$, variables, and the objects \mathbb{R} , V, and f. Note: You are not allowed to use negation (\neg) ! You do not need to know what a function or a vector space is to solve this problem.

Solution.

$$\left(\exists \lambda \in \mathbb{R}, \exists x \in V, f(\lambda x) \neq \lambda f(x)\right) \lor \left(\exists x \in V, \exists y \in V, f(x+y) \neq f(x) + f(y)\right)$$

Problem 7. (5 points) Which integers are divisible by zero? Justify your answer.

Solution. An integer n is divisible by zero if and only if there is an integer c satisfying the equation $n = c \times 0$. But no matter what c is, $c \times 0$ will always be 0, so the only way this equation can have a solution is if n = 0. Therefore no integer other than zero is divisible by zero.

Of course, if n = 0 then we can choose c to be any integer to make $n = c \times 0$ valid. This shows that 0 is divisible by zero.

We conclude that zero is divisible by zero and that no other integer is divisible by zero. \Box

Problem 8. (3 points) Which of the following are true for all sets A and all objects x? Circle those that are. (Scoring: 1 point for each correct answer circled; 1 point for each incorrect answer not circled.)

- (A) $\{x\} \in A \iff \{\{x\}\} \subseteq 2^A$
- (B) $x \subseteq A \implies \{x\} \subseteq 2^A$
- $(\mathbf{C}) \ \{x\} \in A \implies x \subseteq A$

Solution. (B)

Problem 9. (5 points) Suppose that S is a set and P(x) is a sentence that depends on an element x of S. Assume that the sentence $\forall x \in S, P(x)$ is true. Must the sentence $\exists x \in S, P(x)$ also be true? Justify your answer.

Solution. No. If S is empty then no matter what P(x) is, the sentence $\forall x \in S, P(x)$ is true but $\exists x \in S, P(x)$ is false.

Problem 10. (5 points) Give precise conditions on finite sets X and Y under which the formula |X - Y| = |X| - |Y| is correct. (Your answer should describe a relationship between X and Y such that, if X and Y have that relationship then |X - Y| = |X| - |Y|, and if X and Y do not have that relationship then |X - Y| = |X| - |Y|, and if X and Y do not have that relationship then |X - Y| = |X| - |Y|. The relationship you describe may not make reference to the cardinalities of any sets.)

Solution. The formula |X - Y| = |X| - |Y| holds if and only if $Y \subseteq X$.

Problem 11. (i) (3 points) Let $X = \{0, 1, 2\}$ and let $Y = \{3, 4\}$. Indicate which of the following sets are relations from X to Y by circling those that are:

Ø	$X \times Y$
$\{(0,4),(0,3)\}$	$\{(0,0),(1,4)\}$
$X \cup Y$	$X\cap Y$

(Scoring: 1/2 point for each correct answer circled; 1/2 point for each incorrect answer not circled.)

Solution. \emptyset , $X \times Y$, $\{(0, 4), (0, 3)\}$, and $X \cap Y$ are all relations from X to Y. (Note that $X \cap Y = \emptyset$ in this case; for most sets X and Y the set $X \cap Y$ is not a relation from X to Y.) The sets $X \cup Y$ and $\{(0, 0), (1, 4)\}$ are not relations from X to Y.

(ii) (5 points) Suppose that X is a set with a elements and Y is a set with b elements. How many different relations are there from X to Y? Justify your answer briefly.

Solution. Observe that a relation from X to Y is the same thing as a subset of $X \times Y$. Therefore the set of all relations from X to Y coincides with $2^{X \times Y}$. This has $2^{|X \times Y|} = 2^{|X| \times |Y|} = 2^{ab}$ elements, so there are 2^{ab} relations from X to Y.