LECTURE 8: WEIERSTRASS FORMULAE

1. THE WEIERSTRASS FORMULA FOR MINIMAL SURFACES IN E3

Weierstrass showed that any minimal surface in E3 could be described in
terms of holomorphic functions of a complex variable. We will use adapted
frames on the surface to derive this result.

Let {e1, e2, e3} be an orthonormal frame on a surface ¥ C E? with e3 normal
to the surface at each point. Recall that for such a frame we have

w:f - I’LH h12 wl
wg’ ]’L12 h22 w2

for some functions hi1, hio, hoo and that ¥ is minimal if and only if A1 +
hog = 0.

Consider the complex vector-valued 1-form
€ = (e] —ieg)(w! + iw?)

= (eyw! + eaw?) +ie w?

—eywh).
¢ is well-defined independent of the choice of adapted frame, and its exterior
derivative is
d¢ =i(der A W2 + e dw?® — deg A w' — ey dwl)
= i(h11 + haz)ez w! A W
Therefore d¢ = 0 if and only if ¥ is minimal.
Suppose that ¥ is minimal and let z, f be local complex-valued functions on
3. such that
wl +iw? = fdz.
(Such functions always exist for any 1-form on a surface, although this is not

true on higher-dimensional manifolds.) The function f must be everywhere

nonzero, and since
24
dzNdz = —le/\w2 #0,

we can regard z as a local complex coordinate on X; this defines a complex
structure on X.. If we define F(z, z) to be the vector valued function

F = (61 — ieg)f
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then
E=Fdz.
The fact that ¥ is minimal, and hence that d§¢ = 0, implies that F' is a
function of z alone and so is a holomorphic function on . Moreover,
(F,F) = f*(e1 —iez, e1 — iez) = 0.
Since ¢ is a closed (1,0)-form, locally there exists a holomorphic function
X (z) such that £ = dX (and so X'(2) = F(z)), and
Re(dX) = Re(¢) = ejw! + eaw? = da
where z is the position vector on the surface 3. Therefore, up to a translation
in E? we have
X(z) =z(z) +iy(z)

for some real vector-valued function y on ¥. Conversely, if X(z) is any
holomorphic C3-valued function with (X’, X’) = 0, then the surface x =
Re(X) is a minimal surface in E3.

This gives rise to the Weierstrass representation for minimal surfaces. Let
U C C be open, g : U — C a meromorphic function, and f : U — C a
holomorphic function with the property that if g has a pole of order k at
zo € U then f has a zero of order 2k at zy. Choose zyp € U and define
X:U — C3 by

()1 +g(¢)?*)] de.
f(Qg(<)

Then (X', X’) = 0 and so x = Re(X) is the position vector of a minimal
surface ¥ C E3. Conversely, any minimal surface has a local representation
of this form (up to translation) in a neighborhood of any point.

 [3O0 - 9(0?)
L|¥

The first fundamental form of ¥ may be written as
I=3(8
= 1(dX,dX)
= (W' +iw?)(w
— (w1>2 + (wQ)Z'
This leads to the following observation. Let t € R, and set
X =e"X.

The family of minimal surfaces ¥; with position vector x; = Re(X}) is called
the associated family of ¥. All the surfaces in this family clearly have the
same first fundamental form and so are isometric. In particular, the surface
Y3 /2 with position vector y = Im(X) is isometric to ¥; this surface is called
the conjugate surface of X.
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2. A WEIERSTRASS-TYPE FORMULA FOR MINIMAL SURFACES IN A3

Now let ¥ C A3 be an elliptic surface, and let {e1, e2, e3} be an orthonormal
frame on ¥ for which the Maurer-Cartan forms satisfy the conditions

w%:wl, wgzwz, wgzO.

Recall that for such a frame we have

w% . 511 612 wl
w% N Ly lyo| |W?

2(4)% h1 —hg wl
1 21 | o
2w§ *hl hQ w
where h1 = h111 = —h122, ho = hoos = —h112, and that ¥ is affine minimal

if and only if 411 + f99 = 0.

Let A(?: denote the complexified affine space A3 ® C, and consider the A2A%—
valued 1-form

¢ =les A (e —ies)(w' + iw?)
= Les Af(erw! + eaw?) +i(erw? — eaw)].

¢ is well-defined independent of the choice of adapted frame, and a straight-
forward computation shows that its exterior derivative is

d§ = %(511 + la2)(e1 N e2) wl A w2,
Therefore d¢ = 0 if and only if ¥ is affine minimal.

Suppose that ¥ is affine minimal and let z, f be complex-valued functions
on X such that

wl +iw? = fdz.
By the same reasoning as in the Euclidean case, z can be thought of as

a local complex coordinate on 3, and locally there exists a holomorphic
A%A3-valued function X (z) on ¥ such that £ = dX.

For ease of notation, let
e= %(61 —ieg)
w=w! +iw?
Then dX = £ = e3 A ew, and by conjugation dX = £ = e3 Aew. A
computation shows that
dlene)=1L(esNew —esNew) = (dX — dX).
It follows that
X — X =2eAeé+2ic
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for some real-valued constant ¢ € A2A3. By adding an imaginary constant
to X, we can assume that ¢ = 0.

At this point we need the “special linear cross product”. This is the unique
skew-symmetric bilinear map

x : A2A% x A2A3 — A3
that is SL(3)-equivariant and satisfies
(61 VAN 62) X (61 A 6’3) =e
for any unimodular basis {ey, ea,e3} of A3. Geometrically, we can think of
v1 Avg € A2A® as the plane spanned by v; and vy. The cross product of
v1 A vy and wy A we is a vector which spans the line of intersection of the
two planes. It can be computed using the ordinary cross product formula in
R3 by
(Ul VAN 1)2) X (w1 A w2) = (1}1 X 1)2) X (w1 X w2).
This cross product can be extended in the obvious way to AQA%.
Now, using this formula for the cross product we compute that
(X - X)xd(X +X)=—ilew+ew) = —idx
where z is the position vector of ¥. Therefore
dr =i[(X — X) x d(X + X)]
=i[X xdX — X xdX +d(X x X)]

and so the position vector x of the surface ¥ is given by

x(2) = x(20) +i[X(2) x X(2) — X(20) X X(20) + /Z(X xdX — X x dX)].
for some zp € X.

Conversely, let U C C be open, and let X : U — A2A% be a holomorphic
function that satisfies the open conditions dX # 0 and X # X. Then the
formula above gives the position vector x of an affine minimal surface .

This Weierstrass-type representation for affine minimal surfaces is due to
Blaschke.

Exercises

1. In the Weierstrass representation for surfaces in E3, let f(z) = 2 and
g(z) = z. Show that the resulting minimal surface is parametrized by

U — %us + uv?

z(u,v) = |—v+ v° — vu?

'LL2—’U2
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where z = u + tv. This is called Enneper’s surface. If you have access to
a software package such as Maple, try sketching the surface over various
intervals in w and v.

2. Recall from Lecture 7, Exercise 1 that the catenoid is parametrized by
cos u cosh v
z(u,v) = |sinucoshwv
v

Show that the Weierstrass representation of the catenoid is obtained by tak-
ing f(z) = —ie™%, g(z) = €'*, and that its conjugate surface is the helicoid.
(Hint: the formula you’ll find for the conjugate surface will require a change
of parameters before it looks like the parametrization for the helicoid from
Lecture 7, Exercise 2.)

3. Consider the affine elliptic paraboloid z = %(.TQ + y?) with its adapted
frame

e1 = (1,0,2)
ez =(0,1,9)
ez = (0,0,1).
Show that its Weierstrass-type representation is obtained by taking
X(z) = —%51 Neg + %zsg ANes+ %Z&g Aep

where {e1,e2,e3} represents the standard basis of A3. (Hint: Write the e;
as

€1 = €1 + X3
€2 = €2 + Ye3
€3 = €3
and note that, since {e1,e9,£3} is a unimodular basis,
(e1 Neg) X (1 Neg) = €1
(eaNes) X (ea Nep) = e
(e3Ner) X (e3 Neg) =e3.)



