
LECTURE 8: WEIERSTRASS FORMULAE

1. The Weierstrass formula for minimal surfaces in E3

Weierstrass showed that any minimal surface in E3 could be described in
terms of holomorphic functions of a complex variable. We will use adapted
frames on the surface to derive this result.

Let {e1, e2, e3} be an orthonormal frame on a surface Σ ⊂ E3 with e3 normal
to the surface at each point. Recall that for such a frame we have[

ω3
1

ω3
2

]
=

[
h11 h12

h12 h22

] [
ω1

ω2

]
for some functions h11, h12, h22 and that Σ is minimal if and only if h11 +
h22 = 0.

Consider the complex vector-valued 1-form

ξ = (e1 − ie2)(ω1 + iω2)

= (e1 ω1 + e2 ω2) + i(e1 ω2 − e2 ω1).

ξ is well-defined independent of the choice of adapted frame, and its exterior
derivative is

dξ = i(de1 ∧ ω2 + e1 dω2 − de2 ∧ ω1 − e2 dω1)

= i(h11 + h22)e3 ω1 ∧ ω2.

Therefore dξ = 0 if and only if Σ is minimal.

Suppose that Σ is minimal and let z, f be local complex-valued functions on
Σ such that

ω1 + iω2 = f dz.

(Such functions always exist for any 1-form on a surface, although this is not
true on higher-dimensional manifolds.) The function f must be everywhere
nonzero, and since

dz ∧ dz̄ = − 2i

|f |2
ω1 ∧ ω2 6= 0,

we can regard z as a local complex coordinate on Σ; this defines a complex
structure on Σ. If we define F (z, z̄) to be the vector valued function

F = (e1 − ie2)f
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then

ξ = F dz.

The fact that Σ is minimal, and hence that dξ = 0, implies that F is a
function of z alone and so is a holomorphic function on Σ. Moreover,

〈F, F 〉 = f2〈e1 − ie2, e1 − ie2〉 = 0.

Since ξ is a closed (1,0)-form, locally there exists a holomorphic function
X(z) such that ξ = dX (and so X ′(z) = F (z)), and

Re(dX) = Re(ξ) = e1 ω1 + e2 ω2 = dx

where x is the position vector on the surface Σ. Therefore, up to a translation
in E3 we have

X(z) = x(z) + iy(z)

for some real vector-valued function y on Σ. Conversely, if X(z) is any
holomorphic C3-valued function with 〈X ′, X ′〉 = 0, then the surface x =
Re(X) is a minimal surface in E3.

This gives rise to the Weierstrass representation for minimal surfaces. Let
U ⊂ C be open, g : U → C a meromorphic function, and f : U → C a
holomorphic function with the property that if g has a pole of order k at
z0 ∈ U then f has a zero of order 2k at z0. Choose z0 ∈ U and define
X : U → C3 by

X(z) =
∫ z

z0

1
2f(ζ)(1− g(ζ)2)
i
2f(ζ)(1 + g(ζ)2)

f(ζ)g(ζ)

 dζ.

Then 〈X ′, X ′〉 = 0 and so x = Re(X) is the position vector of a minimal
surface Σ ⊂ E3. Conversely, any minimal surface has a local representation
of this form (up to translation) in a neighborhood of any point.

The first fundamental form of Σ may be written as

I = 1
2〈ξ, ξ̄〉

= 1
2〈dX, dX̄〉

= (ω1 + iω2)(ω1 − iω2)

= (ω1)2 + (ω2)2.

This leads to the following observation. Let t ∈ R, and set

Xt = eitX.

The family of minimal surfaces Σt with position vector xt = Re(Xt) is called
the associated family of Σ. All the surfaces in this family clearly have the
same first fundamental form and so are isometric. In particular, the surface
Σ3π/2 with position vector y = Im(X) is isometric to Σ; this surface is called
the conjugate surface of Σ.
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2. A Weierstrass-type formula for minimal surfaces in A3

Now let Σ ⊂ A3 be an elliptic surface, and let {e1, e2, e3} be an orthonormal
frame on Σ for which the Maurer-Cartan forms satisfy the conditions

ω3
1 = ω1, ω3

2 = ω2, ω3
3 = 0.

Recall that for such a frame we have[
ω1

3

ω2
3

]
=

[
`11 `12

`12 `22

] [
ω1

ω2

]
 2ω1

1

ω1
2 + ω2

1

2ω2
2

 =

 h1 −h2

−h2 −h1

−h1 h2

[
ω1

ω2

]
where h1 = h111 = −h122, h2 = h222 = −h112, and that Σ is affine minimal
if and only if `11 + `22 = 0.

Let A3
C denote the complexified affine space A3⊗C, and consider the Λ2A3

C-
valued 1-form

ξ = 1
2e3 ∧ (e1 − ie2)(ω1 + iω2)

= 1
2e3 ∧ [(e1 ω1 + e2 ω2) + i(e1 ω2 − e2 ω1)].

ξ is well-defined independent of the choice of adapted frame, and a straight-
forward computation shows that its exterior derivative is

dξ = 1
2(`11 + `22)(e1 ∧ e2) ω1 ∧ ω2.

Therefore dξ = 0 if and only if Σ is affine minimal.

Suppose that Σ is affine minimal and let z, f be complex-valued functions
on Σ such that

ω1 + iω2 = f dz.

By the same reasoning as in the Euclidean case, z can be thought of as
a local complex coordinate on Σ, and locally there exists a holomorphic
Λ2A3

C-valued function X(z) on Σ such that ξ = dX.

For ease of notation, let

e = 1
2(e1 − ie2)

ω = ω1 + iω2.

Then dX = ξ = e3 ∧ e ω, and by conjugation dX̄ = ξ̄ = e3 ∧ ē ω̄. A
computation shows that

d(e ∧ ē) = 1
2(e3 ∧ ē ω̄ − e3 ∧ e ω) = 1

2(dX̄ − dX).

It follows that

X̄ −X = 2e ∧ ē + 2ic
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for some real-valued constant c ∈ Λ2A3. By adding an imaginary constant
to X, we can assume that c = 0.

At this point we need the “special linear cross product”. This is the unique
skew-symmetric bilinear map

× : Λ2A3 × Λ2A3 → A3

that is SL(3)-equivariant and satisfies

(e1 ∧ e2)× (e1 ∧ e3) = e1

for any unimodular basis {e1, e2, e3} of A3. Geometrically, we can think of
v1 ∧ v2 ∈ Λ2A3 as the plane spanned by v1 and v2. The cross product of
v1 ∧ v2 and w1 ∧ w2 is a vector which spans the line of intersection of the
two planes. It can be computed using the ordinary cross product formula in
R3 by

(v1 ∧ v2)× (w1 ∧ w2) = (v1 × v2)× (w1 × w2).

This cross product can be extended in the obvious way to Λ2A3
C.

Now, using this formula for the cross product we compute that

(X̄ −X)× d(X̄ + X) = −i(e ω + ē ω̄) = −i dx

where x is the position vector of Σ. Therefore

dx = i[(X̄ −X)× d(X̄ + X)]

= i[X̄ × dX̄ −X × dX + d(X̄ ×X)]

and so the position vector x of the surface Σ is given by

x(z) = x(z0) + i[X(z)×X(z)−X(z0)×X(z0) +
∫ z

z0

(X̄ × dX̄ −X × dX)].

for some z0 ∈ Σ.

Conversely, let U ⊂ C be open, and let X : U → Λ2A3
C be a holomorphic

function that satisfies the open conditions dX 6= 0 and X̄ 6= X. Then the
formula above gives the position vector x of an affine minimal surface Σ.
This Weierstrass-type representation for affine minimal surfaces is due to
Blaschke.

Exercises

1. In the Weierstrass representation for surfaces in E3, let f(z) = 2 and
g(z) = z. Show that the resulting minimal surface is parametrized by

x(u, v) =

 u− 1
3u3 + uv2

−v + 1
3v3 − vu2

u2 − v2


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where z = u + iv. This is called Enneper’s surface. If you have access to
a software package such as Maple, try sketching the surface over various
intervals in u and v.

2. Recall from Lecture 7, Exercise 1 that the catenoid is parametrized by

x(u, v) =

cos u cosh v

sinu cosh v

v

 .

Show that the Weierstrass representation of the catenoid is obtained by tak-
ing f(z) = −ie−iz, g(z) = eiz, and that its conjugate surface is the helicoid.
(Hint: the formula you’ll find for the conjugate surface will require a change
of parameters before it looks like the parametrization for the helicoid from
Lecture 7, Exercise 2.)

3. Consider the affine elliptic paraboloid z = 1
2(x2 + y2) with its adapted

frame

e1 = (1, 0, x)

e2 = (0, 1, y)

e3 = (0, 0, 1).

Show that its Weierstrass-type representation is obtained by taking

X(z) = − i
2ε1 ∧ ε2 + i

2z ε2 ∧ ε3 + 1
2z ε3 ∧ ε1

where {ε1, ε2, ε3} represents the standard basis of A3. (Hint: Write the ei

as

e1 = ε1 + xε3

e2 = ε2 + yε3

e3 = ε3

and note that, since {ε1, ε2, ε3} is a unimodular basis,

(ε1 ∧ ε2)× (ε1 ∧ ε3) = ε1

(ε2 ∧ ε3)× (ε2 ∧ ε1) = ε2

(ε3 ∧ ε1)× (ε3 ∧ ε2) = ε3.)


