
LECTURE 3: CURVES IN EUCLIDEAN AND AFFINE
SPACES

1. Introduction

When studying submanifolds Σ of a homogenous space G/H, one question
that arises frequently is the notion of equivalence: given two submanifolds
Σ1, Σ2, when can one be transformed into the other via a symmetry of
the underlying space G/H? For instance, in the case of submanifolds of
Euclidean space En we say that two submanifolds are equivalent if one can
be transformed into the other by a rigid motion.

We will approach this general question by considering the restriction of cer-
tain frames on the underlying space G/H to the submanifold Σ in question.
If f : Σ → G/H is an immersion, then “restriction” actually means pull-
back: the restriction of a frame to Σ is really a section of the bundle f−1(G)
lying over Σ. We will find it useful to consider frames that are adapted to
Σ. This means that instead of considering arbitrary frames, we will use
the geometry of Σ to choose “nice” frames. This is somewhat analogous to
choosing “nice” coordinates at a point on a surface to study the geometry
at that point. The beauty of the method of moving frames is that we can
do this at all points simultaneously.

Once we have chosen a nice frame along Σ, we can consider the restriction of
the Maurer-Cartan form ω and its structure equations to this frame. Again,
by “restriction” we actually mean the pullback f∗ω. The structure equations
will generally contain quantities which are invariants of Σ; this means that
if we change Σ by a symmetry of the ambient space G/H, these quantities
remain unchanged. Typical examples of invariants are quantities such as arc
length, curvature, etc.

Given an immersion f : Σ → G/H, the choice of a frame amounts to a lifting
of f to a map f̃ : Σ → G. In order for the frame to contain useful information
about the invariants of Σ, the choice of this lifting should be completely
determined in some canonical way by the geometry of Σ. Moreover, the
lifting itself should be invariant in the sense that

(̃g · f) = g · f̃
for any g ∈ G. If such an invariant lifting exists, then the question of
equivalence is completely answered by the following lemma:
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Important Lemma 1: Let f̃1, f̃2 : Σ → G be two smooth immersions.
Then there exists an element g ∈ G such that

f̃1(x) = gf̃2(x)

for all x ∈ G if and only if f̃∗
1 ω = f̃∗

2 ω, where ω is the Maurer-Cartan form
of G.

This is not too surprising; if the restriction f̃∗ω contains information about
the invariants of Σ, then this information should remain the same if Σ is
transformed by an element of G. The converse says that, in fact, f̃∗ω con-
tains enough information about Σ to determine it completely up to a sym-
metry of the ambient space.

2. Curves in E3

Consider a smooth parametrized curve x : I → E3 which maps some open
interval I ⊂ R into Euclidean space. A frame along x is a choice, for each
t ∈ I, of an orthonormal frame {e1(t), e2(t), e3(t)} for the tangent space
Tx(t)E3. If the curve is “nice enough” (the precise meaning of this will
become clear shortly), we can choose such a frame in a way that reflects the
geometry of the curve.

Recall that x is regular if x′(t) 6= 0 for every t ∈ I. The first condition we
will require in order that x be “nice enough” is that x must be a regular
curve. With this assumption, we can make our first frame adaptation by
setting

e1(t) =
x′(t)
|x′(t)|

,

i.e., we require that e1(t) be the unit tangent vector to the curve at x(t).
This choice is clearly invariant under the action of E(3). The vector e1

is now uniquely determined, but we may still vary e2, e3 by an arbitrary
rotation in O(2).

Here we make an observation that will simplify the remainder of our com-
putations. Fix t0 ∈ I and define the arc length of x at t ∈ I to be

s(t) =
∫ t

t0

|x′(τ)| dτ.

The arc length is clearly invariant under the action of E(3), and since x′(t) 6=
0 for all t ∈ I, s(t) has an inverse function t(s). By setting x(s) = x(t(s)),
we can assume that x is parametrized by arc length, and so e1(s) = x′(s).

In order to make the next adaptation, we need to make another assumption
about the curve. We will say that x is nondegenerate if x is regular and, in
addition, e′1(s) 6= 0 for all s ∈ I. In this case, differentiating the equation

〈e1(s), e1(s)〉 = 1
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with respect to s yields

〈e′1(s), e1(s)〉 = 0.

Thus e′1(s) is orthogonal to e1(s), and we can make our second adaptation
by setting

e2(s) =
e′1(s)
| e′1(s) |

.

This vector is called the unit normal vector to the curve at x(s). It has the
property that the osculating plane to the curve at x(s) is spanned by e1(s)
and e2(s). This choice is also invariant under the action of E(3).

The frame is now essentially unique; because the frame must be orthonormal,
e3(s) is determined up to multiplication by ±1. (Indeed, if we consider ori-
ented orthonormal frames, e3(s) is uniquely determined.) e3(s) is called the
binormal vector to the curve at x(s). This adapted frame {e1(s), e2(s), e3(s)}
is called the Frenet frame of the curve x(s) and defines a lifting of the curve
x̃ : I → E(3).

Now we want to consider the Maurer-Cartan forms of E(3) restricted to the
Frenet frame. When we pull these forms back via the map x̃ : I → E(3),
they become forms on the 1-dimensional space I, and so they must all be
multiples of ds. For instance, x̃∗(dx) = x′(s) ds. Recall that the structure
equations on E(3) are

dx =
3∑

i=1

ei ω
i

dei =
3∑

j=1

ej ωj
i

and that ωi
j = −ωj

i . Let ∂
∂s denote the vector field on I which satisfies

ds( ∂
∂s) = 1. Pulling back the structure equations via x̃ and evaluating all

the 1-forms on the vector field ∂
∂s yields

x′(s) =
3∑

i=1

ei(s) ωi( ∂
∂s)

e′i(s) =
3∑

j=1

ej(s) ωj
i (

∂
∂s).

But we have chosen our frame so that x′(s) = e1(s) and e′1(s) is a multiple
of e2(s), say e′1(s) = κ(s) e2(s). The function κ(s) is called the curvature of
x at s. Note that x is nondegenerate if and only if κ(s) 6= 0 for all s ∈ I.
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The structure equations imply that

x′(s) = e1(s) =
3∑

i=1

ei(s) ωi( ∂
∂s)

e′1(s) = κ(s) e2(s) =
3∑

j=1

ej(s) ωj
1(

∂
∂s).

Therefore,

ω1( ∂
∂s) = 1, ω2( ∂

∂s) = 0, ω3( ∂
∂s) = 0,

ω2
1(

∂
∂s) = κ(s), ω3

1(
∂
∂s) = 0.

Now define the function τ(s) by

τ(s) = ω3
2(

∂
∂s).

τ(s) is called the torsion of x at s. Then the structure equations for de2, de3

become

e′2(s) =
3∑

j=1

ej(s) ωj
2(

∂
∂s) = −κ(s) e1 + τ(s) e3

e′3(s) =
3∑

j=1

ej(s) ωj
3(

∂
∂s) = −τ(s) e2.

Thus we have the familiar Frenet equations:

[
e′1(s) e′2(s) e′3(s) x′(s)

]
=

[
e1(s) e2(s) e3(s) x(s)

]


0 −κ(s) 0 1
κ(s) 0 −τ(s) 0
0 τ(s) 0 0
0 0 0 0


Note that the matrix on the right multiplied by the 1-form ds is equal to
x̃(s)−1d(x̃(s)), and so is exactly the pullback of the Maurer-Cartan form on
E(3) via x̃.

Applying Important Lemma 1 yields the following theorem:

Theorem: Two nondegenerate curves x1, x2 : I → E3 parametrized by arc
length differ by a rigid motion if and only if they have the same curvature
κ(s) and torsion τ(s).

3. Curves in A3

Now consider a smooth parametrized curve x : I → A3 which maps some
open interval I ⊂ R into affine space. A frame along x is a choice, for
each t ∈ I, of a unimodular basis {e1(t), e2(t), e3(t)} for the tangent space
Tx(t)A3. The situation is quite different from that of Euclidean space; for
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instance, the Euclidean notion of arc length of a curve is not invariant under
the action of A(3). Moreover, we have much greater freedom in choosing
our frame; the only requirement is that det[e1 e2 e3] = 1.

In the Euclidean case we used the first derivative of x to choose e1 and the
second derivative to choose e2, stopping along the way to normalize so that
the frame would be orthonormal. This determined e3 essentially uniquely,
but from the structure equations it is clear that e3 depends on the third
derivative of x. In order for this procedure to work, we had to assume
that x was nondegenerate, i.e., that the vectors x′(s), x′′(s) were linearly
independent for each s ∈ I.

Since orthonormality is not required in the affine case, our first attempt at
an adapted frame might be

e1(t) = x′(t)

e2(t) = x′′(t)

e3(t) = x′′′(t).

In order for this to work, we must assume that the vectors x′(t), x′′(t), x′′′(t)
are linearly independent for each t ∈ I; such a curve will be called nondegen-
erate. For nondegenerate curves the only problem with this choice of frame
is that it is not necessarily unimodular. But we can fix this by defining the
adapted frame to be

e1(t) =
x′(t)

3
√

det[x′(t) x′′(t) x′′′(t)]

e2(t) =
x′′(t)

3
√

det[x′(t) x′′(t) x′′′(t)]

e3(t) =
x′′′(t)

3
√

det[x′(t) x′′(t) x′′′(t)]
.

(Exercise: why is this frame invariant under the action of A(3)?) Now
wouldn’t it be nice to get rid of that ugly denominator? Suppose we
reparametrize the curve by setting x(s) = x(t(s)) for some invertible func-
tion t(s). Then

dx

ds
= t′(s)

dx

dt

d2x

ds2
≡ t′(s)2

d2x

dt2
mod

dx

ds

d3x

ds3
≡ t′(s)3

d3x

dt3
mod {dx

ds
,
d2x

ds2
}
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so det[x′(s) x′′(s) x′′′(s)] = t′(s)6 det[x′(t) x′′(t) x′′′(t)]. This suggests that
we define

s(t) =
∫ t

t0

6
√

det[x′(τ) x′′(τ) x′′′(τ)] dτ.

This quantity is the affine arc length, and it is invariant under the action
of A(3). Note that unlike Euclidean arc length, which depends only on the
first derivative of x, the affine arc length depends on the third derivative of
x. In fact, this is dependent on the dimension of the ambient affine space;
the affine arc length of curves in An depends on the nth derivative of x.

Assuming that the curve is parametrized by affine arc length s, we have

e1(s) = x′(s)

e2(s) = x′′(s)

e3(s) = x′′′(s).

Therefore

x′(s) = e1(s)

e′1(s) = e2(s)

e′2(s) = e3(s)

e′3(s) = κ1(s) e1(s) + κ2(s) e2(s)

for some functions κ1(s), κ2(s), called the affine curvatures of x at s. (Exer-
cise: Why is there no e3 term in e′3(s)?) Thus the affine analog of the Frenet
equations is

[
e′1(s) e′2(s) e′3(s) x′(s)

]
=

[
e1(s) e2(s) e3(s) x(s)

]


0 0 κ1(s) 1
1 0 κ2(s) 0
0 1 0 0
0 0 0 0

 .

Applying Important Lemma 1 yields the following theorem:

Theorem: Two nondegenerate affine curves x1, x2 : I → A3 parametrized
by affine arc length differ by an affine transformation if and only if they have
the same affine curvatures κ1(s), κ2(s).

Exercises

1. Prove Important Lemma 1. (Hint: Define h : Σ → G by

h(x) = f̃2(x)f̃1(x)−1

and show that dh = 0. Therefore, h(x) must be constant .)
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2. Prove that the choice of affine frame is invariant under the action of A(3).

3. Use the structure equations of A(3) to compute the pullbacks of the
Maurer-Cartan forms ωi, ωi

j on A(3) via the map x̃ : I → A(3) for a nonde-
generate curve x. Why is there no e3 term in the expression for e′3(s)?

4. Consider the case of a curve x : I → A2. How would you define an
adapted frame x̃ : I → A(2) along x? How would you define nondegeneracy
for x? How would you define affine arc length for x? Use the structure
equations of the Maurer-Cartan forms on A(2) to find a complete set of
invariants for affine curves x : I → A2 parametrized by affine arc length.

5. Hopefully you discovered a single invariant κ(s), called the affine curva-
ture of x, in Exercise 4. Suppose that κ = κ(s) is constant. Show that

a) If κ = 0, then x is a straight line or a parabola.

b) If κ > 0, then x is a hyperbola.

c) If κ < 0, then x is a circle or an ellipse.

(Hint: In each case, you should be able to show that x(s) satisfies a differ-
ential equation whose general solution is not difficult to find. Since each of
these conditions is preserved under affine transformations, you can perform
an affine transformation to eliminate most of the arbitrary constants in the
general solution. Finally, eliminate the parameter s to show that x lies on
the appropriate conic section.)


