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1 Introduction

Graduating as a mathematics major at ASU usually boils down to one final hurdle: passing

MAT 371, also know as Advanced Calculus I. Classes beyond Advanced Calculus I are more

or less ‘à la carte’ and can be taken depending on the interests of the individual student.

However, for most students, MAT 371 is the last math class they need to take. In fact, for

almost all mathematics majors at ASU (including Computational Mathematical Sciences,

Actuarial Science, Statistics, Math for Secondary Education, and the Mathematics (BA)

track), MAT 371 is the last ‘necessary course’ with the MAT prefix on major maps. In

addition, students from other disciplines (physics, business, economics, computer sciences,

etc.) might enroll in MAT 371 for personal interest or for applications in their main field.

What this all means is that MAT 371 classes can be filled with students who are entering

their first truly advanced mathematical course or those who would like it to be their last.

MAT 371, as most students first foray into real analysis and analysis in general, can also

be notoriously difficult. From ASU data on students enrolled in MAT 371 over the last 4

semesters (Fall 2018 - Spring 2020), some 57% of students who take the class finish with

a grade C or lower. Of these students 42% withdraw from the course and 10% receive a

failing grade. This sector of students represent those who leave MAT 371 with negative

connotations of real analysis and perhaps advanced, abstract mathematics in general.
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For this thesis, I want to make a supplement for a course similar to MAT 371 offered at

ASU: MAT 370, or Intermediate Analysis. The scope of MAT 370, in comparison with MAT

371, is more aligned with what I plan to present. For examples, topics such as sequences

of functions and series in general are covered in MAT 371, but will not be discussed in this

thesis. I want this thesis to alleviate some of the difficulties of MAT 370 and cater to the

needs of both non-experts, struggling students, and those who might come from a different

major or background. This supplement aims to be exactly that, a supplement; students can

use this treatment of MAT 370 material to both enrich and review what they see in class, or

if nothing else, offer them a different proof or presentation of concepts. I will still be giving

definitions and proving theorems, but I want to focus on content that might not normally

be covered in a regular 75 minute class period: developing the motivation behind proofs and

theorems, providing worked examples and counterexamples, and applying results to other

fields when appropriate.

For preparatory work, I have researched both qualities of effective mathematics textbooks

and qualities of effective teaching strategies for classes similar to MAT 370. There are of

course many textbooks written on the subject of Intermediate Calculus, or Introductory

Real Analysis, and I’m sure every teacher at ASU has their own set of notes for teaching

the class or their favorite reference material. I will lay out in the next section what I will

do to make this supplement unique for the audience I am hoping to benefit, but I hope that

professors and students alike will find this work helpful during what can sometimes be a

traumatic semester of MAT 370.

2 Preliminary Research

Before beginning the supplement itself, it would be remiss to not acknowledge some of

the extensive research done on this subject. Beyond examining what has been done with

respect to teaching courses like MAT 370, it is necessary to examine the qualities of effective

textbooks and other learning materials as well. In this way, the supplement will aim to

implement both effective conceptual and pedagogical notions with regards to introductory

real analysis, but also to be an appealing textbook.

2.1 Textbook Creation

Much of the literature on textbook analysis is in the scope of elementary and high school

education. However, this will still be useful for the purpose of this supplement given the

intended audience. Non-experts and those who struggle in MAT 370 might not prefer or

benefit from a standard “definition-theorem-proof” layout in a textbook [1]. Howson, in a

personal perspective on the development of mathematics textbooks, presents a list of some

of the attributes that a textbook reviewer might consider [2]:
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• Mathematical coherence

• Clarity and accuracy of explanations

• The range, quantity and quality of the exercises

• The connections with real-life and with other curricular subjects

• The physical attractiveness of the texts: format, type, colour, illustrations

• Some signs of originality in material

Much of the information that Howson gives is in the context of elementary and high school

education, but the meaning and intent for university-level students still hold. The first two

attributes are quite straightforward and hopefully a standard for any mathematics text.

The next two attributes, however, are of the utmost importance for this supplement. The

quality of exercises for this supplement will be focused on both variety and using different

techniques to get students more used to the semantics of formal mathematical language.

This variety will help students choose their own strategy instead of seeing the same type of

exercise with the same repeated technique. This type of “blocked” practice from the context

of elementary education has a negative effect on students [3] and instills within them a sense

of algorithmic problem-solving in which every exercise can be solved the same way. Instead,

this supplement will incorporate the “interleaved” practice model [3]: working examples that

do not use the same technique although they deal with the same content. This interleaved

model, although seen in the context of elementary school textbooks, is especially conducive

to a text of supplement of this level. Seeing the connections between these analysis concepts

(sequences, continuity, and differentiability, for example) allows for worked examples that

call back to previous content while being different in their own right.

The final two attributes of the list are the most surprising to be applied to university

level content. Often times, textbook chapters appear to be long blocks of text after each

other, with an occasional theorem or proof block to separate. This supplement will not only

utilize color to make it more visually appealing and original, but to emphasize important

concepts and differentiate what is meant to be proved and what has been proved [2]. Using

different colors for definitions, theorems, lemmas, corollaries, etc. will help prepare the

reader for what is coming.

The implementation of diagrams and mathematical imagery is yet another way to include

color that has many more benefits to student understanding. For one, as discussed in Pinto

and Weber, mathematical imagery is effective at linking the formal definitions and concepts

to intuitive and semantic notions of analysis [4, 1]. Pinto highlights the story of a gifted

mathematics student who is able, for example, to translate effortlessly between the formal

definition and a graphical representation of its meaning [4]. While this situation is not a

relatable one to many students in MAT 370, this supplement will help guide students to at
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least see the inner workings behind definitions and concepts. Furthermore, some concepts

in real analysis lend themselves nicely to a more semantic and visual description such as

topological notions (interiors, closures, etc.) as seen in [1].

Beyond visual elements of this supplement and content of the above list, one final at-

tribute this supplement will focus on is the use of appropriate mathematical language.

Raman, in her analysis on the presentation of the definition of continuity in different lev-

els of textbooks, found that these textbooks send different epistemological messages to

students [5]. The three calculus books, denoted Pre-calculus, Calculus, and Analysis, pro-

vided different levels of formality with the definition of continuity. The level of this sup-

plement falls somewhere between Calculus and Analysis given that the former only gives

the “ lim
x→ x0

f(x) = f(x0)” definition while the latter gives one in terms of abstract metric

spaces. This study describes that the Analysis definition lacks motivation although it is

abstract, formal, and is referenced in later chapters of the book. Additionally, there are

no informal connections given for the formal definition in this text. On the other hand,

Calculus sends the message that formal definitions are merely made to “make an easy task

cumbersome” and need not be remembered. This supplement will apply this situation as a

model: formal definitions will always be given, but not without motivations and appropriate

informal connections in the form of visuals or semantic discussion.

2.2 Introductory Real Analysis Pedagogy

Much has been written on the teaching of classes like MAT 370, or Introductory Real

Analysis (IRA), but we focus on some examples in early stages of the course and how

students take to these different learning methods. We begin with Roh’s study of an ε-strip

activity on the development of students’ intuition based on prior learning [6]. Concepts

discussed in the article include “primary” and “secondary intuition”. Primary intuition

in an IRA context includes all student knowledge of content that they may have learned

in previous calculus classes. Secondary intuition, however, is that which is learned and

has become evident “through systematic instruction.” The standard, formal ε-N definition

of convergence falls into the second category when fully understood. The difficulty here is

filling the gaps between students’ primary and secondary intuition. As discussed by Raman,

textbooks may leave students with certain opinions about mathematical formality that are

hard to sway [5]. When a newer, more formal definition arises to clash with a semantic,

intuitive one that students already believe about convergence, there is inner conflict. Roh

uses the classic example of the ε-strip activity for students to construct the formal definition

of convergence through self-discovery [6]. The results of this study showed the development

that students’ secondary intuitions underwent during the ε-strip activity. Some of these new

realizations included the arbitrary nature of ε and the dependence of N on ε (not the other

way around). Given that sequences and their convergence lay at the heart of IRA content,
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we will employ a discussion similar to the ε-strip activity in the section on sequences.

Another pivotal part of garnering understanding in an IRA course that can be applied

to a written supplement is the development of IRA heuristics as discussed by Weber in his

analysis of an IRA professor’s lectures [1]. This professor, Dr. T, wanted to provide his

students with a mathematical toolbox, a “set of techniques and heuristics” that can be used

in future analysis courses. One of the major topics emphasized by Dr. T is the importance

of understanding inequalities, especially in the context of proving results about sequences

and limits. From previous personal experience and reflection, tricks like the classic ε/2

argument come to mind and are essential for growing an intuition or ‘feel’ for the type of

proofs that are quite standard in an IRA course. Explicitly mentioning these techniques

in the supplement will allow students to understand where they are coming from and why

they are necessary, instead of simply seeing a fraction in a string of inequalities.

An interesting application of the importance of taking an IRA course concerns Math

Education majors who might not see the benefit in succeeding in an abstract course like

MAT 370. Wasserman and Weber find in their study on the pedagogical applications of

an IRA course for secondary mathematics teachers that many of the proof concepts play

a role in understanding math at the high school level. One example they discussed was

that of rounding error when computing an answer via calculator [7]. Many students often

don’t wait to simplify their answers of long computation to the end and work with decimal

estimates (like sin(12◦) ≈ 0.208). With IRA experience, secondary math teachers could

help their students understand why pre-rounding can have detrimental results in the end.

For example, the concepts of limits and especially something like |xn − x| < ε is essentially

an approximation with precision ε. But understanding the way in which xnyn → xy and

xn+yn → x+y (i.e. algebraic limit laws) can give secondary math teachers insight into how

rounding errors may quite literally multiply. I would love to share applications like these in

the manuscript to entice those in different fields to not give up on their IRA course.

3 The Real Number System

MAT 370, or Intermediate Calculus, is another name for the types of classes concerned

with Introductory Real Analysis. Thus, before jumping into the analysis, we need to

feel confident about working with the mathematical objects that make up the foundation

of this course, the real numbers themselves. We all know and love the natural numbers,

(N = {1, 2, 3, . . .}), the integers (Z = {. . . ,−2,−1, 0, 1, 2, . . .}) and the rationals (Q = {mn :

m,n ∈ Z, n 6= 0}), each a superset of the previous (N ⊆ Z ⊆ Q). However, the real

numbers, which we will denote as R includes special numbers like
√

2, π, e, etc. that make

R an appropriate setting over which to do mathematical analysis that the other sets of

numbers lack.
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Definition 3.1: The Real Numbers, R

We assume the existence of the set of numbers R that satisfy the following axioms.

First, R is equipped with two binary operations, + (addition) and · (multiplication)

such that for all x, y, z ∈ R:

1. (associative) (x+ y) + z = x+ (y + z); (x · y) · z = x · (y · z).

2. (commutative) x+ y = y + x; x · y = y · x.

3. (distributive) x · (y + z) = (x · y) + (x · z).

4. There exists a unique element 0 ∈ R such that x+ 0 = x for all x ∈ R.

5. For every x ∈ R, there exists a unique y ∈ R such that x+ y = 0.

6. There exists a unique element 1 ∈ R such that x · 1 = x for all x ∈ R.

7. For every nonzero x ∈ R, there exists a unique y ∈ R such that x · y = 1.

Many of these axioms probably seem fairly familiar from since the early days of studying

mathematics. Everything we are used to doing with real numbers is still valid. For notation’s

sake, from associativity axiom we will not write parentheses between sums or products of

more than two real numbers and omit the · in general as well: x + y + z and xyz will

be standard. Also, the unique additive and multiplicative (if x 6= 0) inverses of x will be

denoted −x and 1
x = x−1, respectively. Beyond just operations with real numbers, we will

equip R with an order <, the standard “less than” or “greater than” comparison that we

are familiar with as well.

Definition 3.2: The Standard Ordering < on R

The real number system R is equipped with an order relation < such that for all

x, y, z ∈ R:

1. If x < y, then x+ z < y + z.

2. If x < y and z > 0, then xz < yz.

3. (transitive) If x < y and y < z, then x < z .

4. (Trichotomy) For any x, y ∈ R exactly one of the following hold: x < y, y < x,

or x = y.

To put these axioms to use, we prove some results about real numbers that are useful to

know and not shocking by any means.
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Example 3.3: Additional Properties of R

The following properties of real numbers follow from the above axioms:

1. If x+ z = y + z then x = y.

2. x · 0 = 0 for all x ∈ R.

3. If x < y then −y < −x.

4. −x = (−1) · x for all x ∈ R.

5. (−1) · (−1) = 1

6. x2 ≥ 0 for all x ∈ R.

7. 0 < 1.

8. If 0 < x < y then 0 < 1
y <

1
x .

Proof. .

1. Suppose that x+z = y+z. By Definition 3.1.5, z has an additive inverse that we add to

both sides of x+z = y+z, (x+z)+(−z) = (y+z)+(−z). By Definition 3.1.1, 3.1.5, and

3.1.4, we have that (x+z)+(−z) = (y+z)+(−z). Then x+(z+(−z)) = y+(z+(−z)),
which implies x+ 0 = y + 0, which implies x = y.

2. By Definition 3.1.4, we know that for any x ∈ R, x · 0 = x · (0 + 0). The distributive

axiom says that

x · 0 + 0 = x · 0 = x · (0 + 0) = x · 0 + x · 0

By the previous result, we have that x · 0 = 0.

3. Supposing that x < y, we add the quantity (−x) + (−y) to both sides by Definition

3.2.1: x + ((−x) + (−y)) < y + ((−x) + (−y)). Reassociating on the left side gives

x+((−x)+(−y)) = (x+(−x))+(−y) = 0+(−y) = −y. Commuting and reassociating

on the right sides gives y+ ((−x) + (−y)) = y+ ((−y) + (−x)) = (y+ (−y)) + (−x) =

0 + (−x) = −x. Finally, it follows that −y < −x.

4. We prove that x+(−1)·x = 0. This would imply that (−1)·x = −x, the unique additive

inverse of x. By the distributive axiom, we have that x+ (−1) · x = 1 · x+ (−1) · x =

(1 + (−1)) ·x = 0 ·x = 0. The result follows. We make a special note that the additive

inverse of 0 is −0 = (−1) · 0 = 0.

5. As an application of (4), we know that (−1)·(−1) = −(−1). Further, since −1+1 = 0,

it follows that the additive inverse of −1 is −(−1) = 1. Therefore, (−1) · (−1) =

−(−1) = 1. Essentially, two negative signs multiplied together cancel out.

6. If x = 0, then x2 = 0 · 0 = 0. If x > 0, then by Definition 3.2.2, 0 = 0 · x < x2.

Finally, if x < 0, then by result (3) we have 0 < −x and by Definition 3.2.2 once

again, −x2 = (−1) · x · x = x · (−x) < 0 · (−x) = 0. By result (3), 0 < x2.
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7. We know from (6) that 1 · 1 = 1 ≥ 0. We suppose by contradiction that 0 = 1. Then

for any nonzero x ∈ R (we assume that not all real numbers are 0), we would have

that 0 = x · 0 = x · 1 = x, a contradiction to x being nonzero. Therefore, 1 must be

strictly larger than 0, 0 < 1.

8. We show that if x > 0, then 1
x > 0. Suppose by contradiction that 1

x ≤ 0. If 1
x = 0,

then 1 = x · 1
x = x · 0 = 0, contradicting result (7). If 1

x < 0, then 0 < − 1
x and

−1 = − 1
x ·x > 0, or rather, 1 < 0, further contradicting (7). Thus, 1

x is positive if x is.

Now to the property at hand. We multiply the inequality 0 < x < y by the number
1
x ·

1
y > 0. It follows that 0 · 1x ·

1
y < x · 1x ·

1
y < y · 1x ·

1
y , or rather, that 0 < 1

y <
1
x .

Many of these results seem tedious, and they are, but proving them once if only to forget

about the axiomatic mechanics behind the scenes is beneficial. Finally, we need a way to

talk about the ‘distance’ between two real numbers x and y. For example, how ‘far away’

are 0 and 1? How ‘close’ are − 1
4 and − 1

3 (see Figure 1)? Regardless, we want our ‘distance’

to be either positive or 0 (negative distances do not make sense). Further, we expect that

the only point 0 distance away from x ∈ R should be x itself. There are other properties

that we like a distance between real numbers to satisfy, and they are all accomplished with

the following definition of absolute value.

We define the absolute value of a real number x as follows.

Figure 1: Distances

Definition 3.4: The Absolute Value

The absolute value of a real number x is

given by the function

|x| =

{
x x ≥ 0

−x x < 0
.

Figure 2 shows a graph of |x|. Figure 2: f(x) = |x|

The absolute value lends itself to computing distance between real numbers: the distance

between x ∈ R and y ∈ R is |x− y|. For example, 0 and 1 are |0− 1| = |−1| = 1 unit apart
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while − 1
4 and − 1

3 are
∣∣− 1

4 − (− 1
3 )
∣∣ =

∣∣ 1
12

∣∣ = 1
12 units apart. We now prove various properties

of |x| that will be extremely useful throughout MAT 370.

Theorem 3.5: Absolute Value Properties

For all x, y ∈ R the following hold:

1. |x| = 0 if and only if x = 0.

2. |x| = |−x|.

3. |xy| = |x| |y|.

4. For M ≥ 0, |x| ≤ M if and only if

−M ≤ x ≤M .

5. |x± y| ≤ |x|+ |y|

6. ||x| − |y|| ≤ |x± y|.

Proof. .

1. If x = 0, then by the definition of |x|, |x| = 0. For the converse, we argue by

contraposition. If x < 0, |x| = −x > 0. If x > 0, |x| = x > 0. Thus, x 6= 0 implies

|x| 6= 0.

2. If x = 0. −x = 0 and thus 0 = |x| = |−x| = 0. If x < 0, −x > 0 and thus

|x| = −x = |−x|. Similarly, if x > 0, −x < 0 and |x| = x = −(−x) = |−x|.

3. We check cases here as well. If xy = 0 then one of x or y equals 0. Thus, one of

|x| or |y| equals 0 which implies that |xy| = 0 = |x| |y|. If xy > 0, x and y are both

positive or both negative. In the first case, |xy| = xy = |x| |y|. In the second case,

|xy| = xy = (−x)(−y) = |x| |y|. If xy < 0, then x and y have opposite signs. If x < 0

and y > 0 then |xy| = −xy = (−x)y = |x| |y|. The same holds for x > 0 and y < 0.

All cases of xy ∈ R hold.

4. Let M ≥ 0. Suppose that |x| ≤ M . If x ≥ 0, then −M ≤ 0 ≤ x = |x| ≤ M . If

x < 0, then 0 < −x and −M ≤ 0 < −x = |x| ≤ M . The forward direction holds

in all cases. Suppose now that −M ≤ x ≤ M . The second inequality tells us that

x ≤M , of course, and the first inequality tells us that −x ≤M . Thus, in all cases of

the definition of |x| we must have that |x| ≤M .

5. We apply result (4) with M = |x| ≥ 0. Since |x| ≤ |x|, it follows that − |x| ≤ x ≤ |x|.
The same holds for y: − |y| ≤ y ≤ |y|. Adding these inequalities, we have that

−(|x| + |y|) ≤ x + y ≤ |x| + |y|. By result (4), it follows that |x+ y| ≤ |x| + |y|. For

|x− y| ≤ |x|+ |y|, we note that − |y| ≤ −y ≤ |y| as well and we go through the same

process.
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6. The trick here is to add a 0 and apply result (5). We know that

|x| = |x+ y − y| ≤ |x+ y|+ |−y| = |x+ y|+ |y| . (1)

This implies that |x| − |y| ≤ |x+ y|. We now do the same calculation but switch x

and y:

|y| = |x+ y − x| ≤ |x+ y|+ |−x| = |x+ y|+ |x| , (2)

which means that |y| − |x| ≤ |x+ y| or rather, that − |x+ y| ≤ |x| − |y|. By result

(4), − |x+ y| ≤ |x|− |y| ≤ |x+ y| implies ||x| − |y|| ≤ |x+ y|. For ||x| − |y|| ≤ |x− y|,
we simply note that in equations (1) and (2), we could have written |x+ y − y| ≤
|x− y|+ |y| and |x+ y − x| ≤ |x− y|+ |x|.

These properties are all essential of a ‘distance function’ like |x|. Results (5) and (6) are

often referred to as the Triangle Inequality and the Reverse Triangle Inequality, respectively.

Geometrically, in the plane R2, the triangle inequality can be seen as “the length of one side

of a triangle cannot exceed the sum of the lengths of the other two sides”. Here, the reverse

triangle inequality is of course the fact that “the length of one side cannot be smaller than

the difference of the other two lengths” (see Figures 3 and 4).

Figure 3: The Triangle Inequality Figure 4: The Reverse Triangle Inequality

3.1 The Completeness Axiom

What makes R truly special in comparison to N, Z, or even Q is that it is ‘complete’. In

other words, R does not have any ‘gaps’ between its elements. These gaps in N and Z are

quite obvious: think about all the numbers in between 1 and 2! However, even Q has its

gaps that are detrimental enough to require a ‘larger’ space like R to work over. In order

to begin to talk about the completeness of R, we introduce the notion of bounded subsets

of R.
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Definition 3.6: Boundedness

Let E ⊆ R. E is said to be bounded above if and only if there exists an M ∈ R
such that x ≤M for all x ∈ E. We call M an upper bound of E.

This subset E is said to be bounded below if and only if there exists an M ′ ∈ R
such that M ′ ≤ x for all x ∈ E. We call M ′ a lower bound of E.

We say that E is bounded if and only if E is bounded above and bounded below.

An unbounded set E is a set that is not bounded.

Since bounded sets are so important and this definition is based off of other definitions,

we give some equivalent characterizations of boundedness.

Lemma 3.7: Boundedness Characterizations

Let E ⊆ R. The following are equivalent:

1. E is bounded.

2. There exist M,M ′ ∈ R such that E ⊆ [M,M ′].

3. There exists M ∈ R such that |x| ≤M for all x ∈ E.

Proof. That (1) and (2) are equivalent follows from the definition of bounded and that

[M,M ′] = {x ∈ R : M ≤ x ≤M ′}.
For the equivalence of (2) and (3), we start with the converse. Suppose that there exists

M ∈ R that |x| ≤ M for all x ∈ E. By Theorem 3.5.4, we have that for all x ∈ E,

−M ≤ x ≤ M , or rather, E ⊆ [−M,M ]. For the forward direction, we suppose that

there exist M,M ′ ∈ R such that E ⊆ [M,M ′]. We need one real number a such that [−a, a]

contains the entirety of [M,M ′]. So, we pick whichever value of M and M ′ is furthest from 0,

a := max{|M | , |M ′|} (see Figure 5). Thus, for all x ∈ E, we have that x ∈ [M,M ′] ⊆ [−a, a].

In other words, −a ≤ x ≤ a, or rather, |x| ≤ a, by Theorem 3.5.4.

Figure 5: Constructing [−a, a]
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This trick of picking a maximum or minimum of finitely many values is used frequently

in MAT 370, so get used to it! We look at some quick examples of bounded and unbounded

sets:

Example 3.8: Bounded and Unbounded Sets

1. Any interval of real numbers (a, b), (a, b], [a, b) [a, b] is bounded.

2. The natural numbers are bounded below but not bounded. For example, n ≥ 1

for all n ∈ N. We will examine the unboundedness of N later.

3. The set E = {q ∈ Q : q2 < 2} is bounded since E ⊆ [−2, 2]. It also holds that

E ⊆ [−1, 1.5] and even E ⊆ [0,
√

2].

From the last part of the previous example, we see that a bounded set E can be contained

in many such sets. This begs the question: is there a ‘smallest’ set that bounds E? Is there

a smallest number M such that |x| ≤ M for all x ∈ E? Similarly, is there a greatest lower

bound for E? We give a definition for such special upper and lower bounds of a subset of

R.

Definition 3.9: Suprema and Infima

Let E ⊆ R. We define the supremum of E, notated sup(E), as the real number α

that satisfies

i. α is an upper bound of E

ii. α is the least upper bound of E: for any other upper bound M of E, α ≤M .

Similarly, the infimum of E, denoted inf(E) is the real number β that satisfies

i. β is a lower bound of E

ii. β is the greatest lower bound of E: for any other lower bound M ′ of E, M ′ ≤ β.

Note that throughout the definition we have used the article ‘the’ when talking about

these suprema and infima. We confirm that these special values of a set E are indeed unique:

Theorem 3.10: Uniqueness of sup(E) and inf(E)

Let E ⊆ R, α = sup(E), and β = inf(E). Then α and β are both unique.

Proof. Suppose, for the case of the supremum, that α1 and α2 are both suprema of E. By

definition, they are both upper bounds of E and both the least upper bound of E. Thus,
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α1 ≤ α2 and α2 ≤ α1, which implies α1 = α2. The same argument can be given for

infima.

Beyond just being unique, these suprema and infima behave nicely with sets that we

know have maxima and minima. Nowhere in the definitions of suprema and infima does it

say that they have to be elements of the set E themselves. However, if E has a maximum

or minimum, then the supremum and infimum fall in the set:

Theorem 3.11: Maxima and Minima are Suprema and Infima

If E ⊆ R has a maximum or minimum, then sup(E) = max(E) and inf(E) = min(E).

Proof. For the supremum case, we check that max(E) satisfies the definition of supremum.

max(E) ≥ x for all x ∈ E by definition, so it is an upper bound. Let M be any upper

bound of E. Since max(E) ∈ E, then max(E) ≤M and thus max(E) = sup(E). The same

argument can be carried out for infima.

We give one final tool for working with suprema and infima, an equivalence that defines

suprema and infima from the ‘inside’ of a set. It might be easier to prove things about

suprema and infima this way:

Theorem 3.12: Suprema and Infima Equivalences

Let E ⊆ R. Then α = sup(E) if and only if

i. α is an upper bound of E

ii. If x < α, then there exists y ∈ E such that x < y.

Similarly, β = inf(E) if and only if

i. β is a lower bound of E

ii. If x > β, there exists a y ∈ E such that y < x.

Proof. To prove the equivalences, we only check (ii) for each, since (i) is the same everywhere.

For the supremum case, If α is the supremum, it follows that if x is an upper bound of E,

then α ≤ x. We examine the contrapositive of this statement. Equivalently, this means

that if x < α, then M is not an upper bound of E. Thus, if x < α, there exists an y ∈ E
such that x < y, what we wanted to show. Sorry for the abuse of notation from what we

have been using to denote upper bounds, but this makes the equivalence a bit clearer to

see. Again, a symmetric argument can be given for infima.
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Now is the time for the Completeness Axiom, which has to do with boundedness and

suprema of subsets of real numbers. This is what makes R so special in comparison to some

of the subsets we have mentioned previously, and we take it to be an axiom, something we

hold to be intrinsically true about the real number system:

Definition 3.13: The Completeness Axiom

Every nonempty, bounded above subset of R has a supremum.

Let’s unpack the power of this statement. If we know that a subset E of the real

numbers is bounded above by some number M , no matter how ‘far away’ from E it is, we

are guaranteed the existence of another real upper bound that is as ‘close’ as we want it to

be to E. Let’s look at some examples of this:

Example 3.14: The Completeness Axiom, examples

1. sup((0, 1)) = 1.

2. sup({x ∈ R : 0 < x < 5 and cos(x) = 0}) = 3π
2 .

3. sup({ 1n : n ∈ N}) = 1.

Proof. All of these sets are nonempty and bounded above (with upper bounds 1, 5, and 1,

respectively), so we are guaranteed the existence of their suprema.

1. We check that 1 satisfies condition (ii) given in Theorem 3.12. Suppose that x < 1.

It follows that the average of these two numbers, x+1
2 is strictly between them: x <

x+1
2 < 1. Thus, this x+1

2 is our element in (0, 1) that satisfies condition (ii) and hence

sup((0, 1)) = 1.

2. Since cos(x) = 0 if and only if x is a multiple of π
2 , then the set whose seprumum we

want to find is actually {π2 , π,
3π
2 }, a finite set. Thus, its supremum is the maximum

value: 3π
2 .

3. Again, this is not too bad for the supremum case, but this set looks like {1, 12 ,
1
3 , . . .}.

Thus, 1 is the maximum value of this set and hence its supremum as well.

There are various applications of the Completeness Axiom that we can discuss now to be

able to work with infima, natural numbers, and rational numbers more efficiently. However,

in general, and later in the course, the Completeness Axiom will be the anchor to which

many ‘deep theorems’ of Real Analysis are linked. Let’s begin with infima:

15



Theorem 3.15: The Completeness Axiom (for infima)

Every nonempty, bounded below subset of R has an infimum.

Proof.

Let E be a nonempty set that is bounded

below, say by some M ′ ∈ R (i.e. M ′ ≤ x for

all x ∈ E). We need to get our hands on a

set that is bounded above to be able to ap-

ply the Completeness Axiom. We consider

the set −E = {−x : x ∈ E} (see Figure 6;

by no means does E need to be an interval

of any kind, but it is good for illustration).

Figure 6: E and −E

Since M ′ ≤ x for all x ∈ E, then −x ≤ −M ′ for all x ∈ E, or rather −M ′ is an upper

bound for all elements of −E. So, by the Completeness Axiom, sup(−E) exists and we call

it α. We check now that −α satisfies the conditions to be the infimum of E. Since α is an

upper bound of −E, −α is a lower bound of E, using the same technique as with M ′ and

−M ′. Now, for any other lower bound M of E, we need to show that E ≤ −α. Well, since

M is a lower bound of E, −M is an upper bound of −E and by definition of supremum,

α ≤ −M . Negating this inequality gives our desired M ≤ −α. It follows that E has an

infimum, namely, −α.

The result of this proof can be summarized nicely using this definition of the negation

of a set, −E: − inf(E) = sup(−E) and − sup(E) = inf(−E). In a way, negating suprema

and infima equates to flipping the suprema and infima and ‘negating’ the set itself. We now

look at a critical example that handles the relationship between set inclusion, suprema and

infima. It is a good example of applying the definitions of suprema and infima.

Example 3.16: Suprema, Infima, and Subsets

Suppose that A and B are bounded subsets of R such that A ⊆ B. Then

inf(B) ≤ inf(A) ≤ sup(A) ≤ sup(B).

Proof. Since both A and B are bounded, we know that the numbers inf(A), sup(A), inf(B),

and sup(B) all exist by the Completeness Axiom and Theorem 3.15. Since inf(A) is the

greatest lower bound of A it suffices to show that inf(B) is a lower bound of A. Similarly,
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it suffices to show that sup(B) is an upper bound for A. Let a ∈ A. Then since A ⊆ B,

a ∈ B and thus inf(B) ≤ a ≤ sup(B). Thus inf(B) and sup(B) are indeed lower and upper

bounds for A, respectively. Therefore, by the definition of the supremum and infimum of

A, inf(B) ≤ inf(A) and sup(A) ≤ sup(B). For the final, middle inequality we know by

definition that for all a ∈ A, inf(A) ≤ a ≤ sup(A), so the whole chain of inequalities is

satisfied.

The natural numbers will be used frequently in MAT 370 for approximations, which we

will get to, so we need the following essential result, as an application of the Completeness

Axiom.

Theorem 3.17: The Archimedean Property

The natural numbers are not bounded above. For all x ∈ R, there exists N ∈ N such

that x < N . Also, for all x > 0, there exists N ∈ N such that 1
N < x.

Proof. We suppose, by contradiction, that N is a bounded above subset of R. Thus, sup(N)

exists, and we call it M ∈ R. Thus, for all n ∈ N n ≤ M . From condition (ii) of Theorem

3.12, we know that M −1 < M and thus there exists a k ∈ N such that M −1 < k. But this

implies that k+ 1 ∈ N and M < k+ 1, contradicting the fact that M is an upper bound. N
must not be bounded above.

The second claim in the statement of the theorem follows immediately from negating the

definition of bounded above. For the third, suppose that x > 0 so that 0 < 1
x ∈ R. Then,

there exists N ∈ N such that 1
x < N , or rather, 1

N < x.

With our tools we have so far, we return to Example 3.14 to compute the infima of the

given sets.

Example 3.18: The Completeness Axiom, examples

1. inf((0, 1)) = 0.

2. inf({x ∈ R : 0 < x < 5 and cos(x) = 0}) = π
2 .

3. inf({ 1n : n ∈ N}) = 0.

Proof. 1. As above, we know that 0 is a lower bound for (0, 1). To prove condition (ii)

suppose that x > 0. Taking the average analogously, 0 < x
2 < x and we have our

element in the set that is less than x as well: x
2 .

2. Given our finite set in the previous example, the set has a minimum of π
2 and thus a

infimum of π
2 .
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3. We know that every natural number satisfies n > 0 which implies 1
n > 0. Hence 0 is a

lower bound for this set. Now, let x > 0. By Theorem 3.17, there exists N ∈ N such

that 1
N < x. Thus, this 1

N satisfies condition (ii) of Theorem 3.12.

Two famous corollaries of The Archimedean Property of R show how the rationals and

irrationals are intertwined respectively and as subsets of R. They give us a method of

approximate real numbers by rationals.

Corollary 3.19: Density of the Rationals

For any two real numbers x < y, there exists a q ∈ Q such that x < q < y.

Proof. Let x and y be two distinct real numbers such that x < y. We break into cases based

on where x and y are located

Case 1: (x < 0 < y). The rational number that we need for the statement of theorem is

already given: 0. We are done with this case.

Case 2:

(0 < x < y). Here both x and y are

strictly positive. We consider the pos-

itive value y − x > 0 and, from the

Archimedean Property, there exists an

N ∈ N such that 1
N < y − x. This 1

N

is going to be our ‘step size’ to fall into

the interval (x, y) (see Figure 7).

Figure 7: Steps to fall inside (x, y)

As for the number of steps it takes to get to (x, y), we consider the set {mN : m ∈ N} of

multiples of our step size 1
N and its further subset S = {mN : m ∈ N and x < m

N < y}.
Are we guaranteed that S is nonempty, that one of the steps falls into (x, y)? Well, if

none of them did, we must have that two adjacent steps were farther apart than the

distance between y and x, |y − x| = y− x. Thus, for some N0 ∈ N we must have that
N0+1
N − N0

N ≥ y − x. This is a contradiction as 1
N = N0+1

N − N0

N ≥ y − x > 1
N . Thus,

by our choice of 1
N , we are guaranteed the existence of at least one step in S. We pick

M = min(S) since every nonempty subset of N has a least element. Finally, it follows

that M
N ∈ Q and x < M

N < y.

Case 3: (x < y < 0) Here, x and y are negative and we multiply the whole inequality by −1:

0 < −y < −x. Now, Case 2 can be applied in a similar way to get M
N ∈ Q such that

−y < M
N < −x, which implies x < −MN < y.
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Corollary 3.20: Density of the Irrationals

For any two rational numbers r1 < r2, there exists a ξ ∈ Qc such that r1 < ξ < r2.

Proof. We know
√

2 to be irrational and q
√

2 to be irrational for any q ∈ Q. Thus, for
r1√
2
, r2√

2
∈ R satisfying r1√

2
< r2√

2
, we know there exists a q ∈ Q such that r1√

2
< q < r2√

2
, or

rather, r1 < q
√

2 < r2. This q
√

2 is our desired ξ ∈ Qc.

Before studying sequences of real numbers in Chapter 5, we take a quick look at the

(standard) topology on R, which will lead to visual, less technical interpretations of some

of the results of Chapter 5.

3.2 Exercises

1. Show that if 0 < x < y, then 0 < xn < yn for all n ∈ N. Deduce a similar rule for

negative numbers x < y < 0.

2. For a ∈ R and b 6= 0, show that ∣∣∣a
b

∣∣∣ =
|a|
|b|
.

3. Prove that for any two distinct x, y ∈ R there exists an infinity of real numbers between

x and y.

4. Suppose that E is a nonempty subset of R. Show that if x ∈ R is not an upper bound

of E, then there exists y ∈ E such that y > x and y is also not an upper bound of E.

5. Suppose that R is partitioned into two disjoint, nonempty sets L and U , i.e. R = L∪U
with L ∩ U = ∅, such that every element in L is less than or equal to every element

of U . Show that there exists a unique element x ∈ R such that l ≤ x ≤ u for all l ∈ L
and u ∈ U .

6. Suppose A and B are bounded, nonempty subsets of R. We define A+ B := {a+ b :

a ∈ a, b ∈ B}. Show that sup(A+B) exists and that

sup(A+B) = sup(A) + sup(B).

Prove the analogous result relating for infima.

7. For A and B nonempty bounded subsets of positive real numbers, define AB = {ab :

a ∈ A, b ∈ B}. Show that sup(AB) and inf(AB) exists and that

sup(AB) = sup(A) sup(B).
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and

inf(AB) = inf(A) inf(B)

Can anything be said if A or B contain negative real numbers or 0?

4 Basic Topology on R

Topology is the study of the structure of certain ‘open’ subsets of a given set X. For our

purposes, we are only concerned with the set R. This section will mainly focus on the

‘standard’ topology on R and offer definitions and examples to provide a more visual and

somewhat less technical treatment of results to come. We want the following properties of

open sets to be true:

1. R and ∅ are ‘open’

2. Any union (infinite or not) of ‘open’ sets is ‘open’.

3. Any finite intersection of ‘open’ sets is ‘open’.

With our set R, we start with a collection of subsets of R that will behave nicely with these

notions of ‘open’ sets we will use in subsequent sections.

Definition 4.1: Open Intervals in R

For a, b ∈ R, with a < b, intervals of the form (a, b) : {x ∈ R : a < x < b} is called

an open interval of R.

These open intervals will be the building blocks of the more general open sets in R. For

any set U ⊆ R, we give the following definition to check when it is open:

Definition 4.2: Open Sets in R

A subset U of R is said to be open if and only if for every x ∈ U , there exists an

open interval (a, b) such that x ∈ (a, b) and (a, b) ⊆ U .

Essentially what this definition is saying is that a set U is open in R is it can be approximated

from the inside by these ‘building block’ sets, the open intervals. To give a more visual

explanation of this definition, we may consider an analogous result for R2, the real plane.

Any set U in the plane is considered open if it can be approximated from the inside by the

‘building block’ sets that would be open circles in this case (see Figure 8). Every point in

U can be contained in a circle that is further contained in U . For our purpose, the real line
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Figure 8: Approximating a general open set U by open circles

does not have the same geometric flare of the real plane but the example of Figure 8 works

the same for open sets in R.

With all this talk of open sets, it begs the question: is there such a notion of closed sets?

We give the following definition:

Definition 4.3: Closed Sets of R

A subset E of real numbers is closed if and only if its complement Ec is open, as

defined in Definition 4.2.

This definition of closed subsets is not entirely elementary. Being closed is not the

opposite of being open. In fact, in other topologies on R, i.e. not the one we are concerned

with given by open intervals, there exists subsets that are both open and closed, and are

called clopen sets. There are, however, subsets of R that are neither open nor closed in

the topology given by open intervals. Lets look at some examples of these different types of

sets in R.

Example 4.4: Closed Intervals in R

Every closed interval of the form [a, b] for a, b ∈ R and a < b is in fact closed, as we

expect.

Proof. We show that the complement of [a, b] is open. This complement satisfies

[a, b]c = (−∞, a) ∪ (b,∞)

We want to show that both (−∞, a) and (b,∞) are open. For the first set, we pick a natural
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number N such that −a < N , which gives −N < a. For all naturals m ≥ N , we have that

(−∞, a) =
⋃
m≥N

(−m, a).

See Figure 9 for a visual of [a, b]c and the reasoning behind (−∞, a) being open. For the

second set, we go through a similar procedure: pick an N ′ ∈ N such that b < N ′. Thus,

(b,∞) =
⋃

m≥N ′
(b,m)

Figure 9: [a, b]c and showing (−∞, a) is open

Finally, it follows that

[a, b]c = (−∞, a) ∪ (b,∞) =

 ⋃
m≥N

(−m, a)

 ∪
 ⋃
m≥N ′

(b,m)

 ,

so that the complement is the union of open intervals and hence open by our properties that

open sets follow. By definition, it follows that [a, b] is closed.

Example 4.5: Subsets neither Open nor Closed in R

Intervals of the form

{(a, b] : a, b ∈ R, a < b}

are neither open nor closed in R.

Proof. Here is some good practice in negating the definition of being open to show that

sets of the form (a, b] are not: A set U is not open in the standard topology if and only if

there exists an x0 ∈ U such that for all open intervals (c, d), x 6∈ (c, d) or (c, d) 6⊆ U . To

prove a statement like this, we negate one of the conclusions and assume it as a hypothesis.

So, we need to find a problematic x0 ∈ (a, b] such that for every open interval (c, d) with

x0 ∈ (c, d), it follows that (c, d) 6⊆ (a, b]. To prove this, set x0 = b and let (c, d) be any open

set containing b. Therefore, b < d and it follows that b+d
2 ∈ (c, d) but not in (a, b]. It follows

22



that (c, d) 6⊆ (a, b]. Thus (a, b] is not open. To show that (a, b] is not closed, it suffices to

show that its complement

(a, b]c = (−∞, a] ∪ (b,∞)

is not open. The set on the right here is open, as above. However, the set (−∞, a] is not

open with the problematic point a. Therefore, (a, b] is neither open nor closed. A similar

argument can be made for sets of the form [a, b).

For the final definitions in this section that will assist us later on, we introduce the notion

of neighborhoods and limit points:

Definition 4.6: Neighborhoods of Real Numbers

For a given x ∈ R, a subset N of R is said to be a neighborhood of x if and

only if there there exists an ε > 0 such that the open interval centered at x satisfies

(x− ε, x+ ε) ⊆ N .

Definition 4.7: Limit Points of a subset E

Suppose E ⊆ R. A real number x ∈ R is a limit point of E if and only if every

neighborhood of x contains infinitely many points of E. We will define the set of all

limit points of a set E as

E′ := {x ∈ R : x is a limit point of E}.

It is crucial to notice here that limit points of E need not be elements of E.

It is clear that these two definitions are intertwined. Let’s discuss the subtleties con-

cerning neighborhoods. At first glance, neighborhoods of some x ∈ R seem to be the same

as the open sets containing x. However, neighborhoods of x are a bit more general. Clearly

every open set containing x is a neighborhood of x: If U is open and x ∈ U , then there

exists some open interval (a, b) such that x ∈ (a, b) ⊆ U . As in Lemma 3.7 and Figure 5, we

use a similar strategy to set ε = min{x−a, b−x} > 0. Thus, x ∈ (x− ε, x+ ε) ⊆ (a, b) ⊆ U .

and it follows that U is a neighborhood of x. However, we note that for the point 1
2 , the

closed interval [0, 1] is still a neighborhood of 1
2 : ( 1

2 −
1
4 ,

1
2 + 1

4 ) = ( 1
4 ,

3
4 ) ⊆ [0, 1]. However,

[0, 1] is not a neighborhood of 0 or 1. Any open interval (a, b) of 0 or 1 will spill out of [0, 1]

(i.e. is not contained in [0, 1]). Further note that by definition even if our neighborhood of x

is not open, we can always find an open set that we can consider our interval: (x− ε, x+ ε).

Therefore, to prove statements about limit points, and for arbitrary neighborhoods of

these points, it suffices to consider only the open intervals containing the limit points them-

selves. Still though, proving something about infinitely many points of a subset E is still
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cumbersome. We give an alternate characterization for showing a real number is a limit

point of a set E:

Theorem 4.8: Alternate Limit Point Characterization

A point x ∈ R is a limit point of E ⊆ R if and only if every neighborhood of x

contains a point y ∈ E such that y 6= x.

Proof. For the simpler forward direction, suppose x ∈ R is a limit point of E and let N be

an arbitrary neighborhood of x. By the definition of a limit point, there exists an infinite

number of points of E that are also members of this neighborhood N . Clearly, we may

choose some y from this infinite number of points that is not x.

For the converse direction, we suppose that every neighborhood of x contains a point

y ∈ E such that y 6= x. Let N be an arbitrary neighborhood of x. We need to find or

construct an infinite number of points from E that are also members of this neighborhood

N . To begin, we are guaranteed the existence of some y1 6= x such that y1 ∈ N ∩ E by

hypothesis. To continue we consider the set N \ {y1}. Is this set a neighborhood of x?

Well, since N is a neighborhood of x, there exists an ε > 0 such that (x− ε, x+ ε) ⊆ N .

If it happens that y1 6∈ (x − ε, x + ε), then (x − ε, x + ε) ⊆ N \ {y1} and N \ {y1} is a

neighborhood of x as well. If y1 ∈ (x− ε, x+ ε), then using the same technique as above in

Lemma 3.7, we may find an ε′ = min{ε, |x− y1|} such that (x− ε′, x+ ε′) does not contain

y1 and thus (x − ε′, x + ε′) ⊆ N \ {y1}. In either case N \ {y1} is a neighborhood of x.

Therefore, we may pick a y2 ∈ E ∩ (N \ {y1}) such that y2 6= x. We are also guaranteed

that y1 6= y2.

Going through this inductive process to find the yn, we will not run into problems and

are thus guaranteed an infinite list (since each yn is distinct by construction) of elements of

E ∩N : y1, y2, y3, . . . for all n ∈ N. This completes our equivalence.

These notions of neighborhoods and limit points will be extremely helpful in our discus-

sion of sequences of real numbers, which are the foundation for real analysis and approxi-

mation. If this section seemed a bit abstract now, it will be seen in a different context in

the following chapter and especially the chapter on continuity as well.

4.1 Exercises

1. Show that for an arbitrary collection {Kα} of closed subsets of R,
⋂
αKα is closed.

Further, for a finite collection {Ki}n1 of closed subsets of R, show that
⋃n

1 Ki is closed.

2. Show that a subset E of R is closed if and only if E contains all of its limit points, i.e.

E′ ⊆ E.
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3. Show that open intervals of the form

{(p, q) : p, q ∈ Q, p < q}

may be used instead of open intervals with general real endpoints. In other words, we

may further approximate general open sets in R by intervals with rational endpoints.

4. Show that every finite subset of R has no limit points. In other words, if E ⊆ R is

finite, then E′ = ∅. Deduce that every finite subset of R is closed.

5. Show that a and b are limit points of the open interval (a, b) with a < b. Deduce that

(a, b)′ = [a, b].

6. Prove that N′ = ∅ and Z′ = ∅, but that Q′ = R.

7. Let E ⊆ R. We define the closure of E, notated E, to be the intersection of all closed

sets that contain E:

E =
⋂
{K ⊆ R : K is closed and E ⊆ K}.

In other words, E is the ‘smallest’ closed set containing E.

a) Show that E is indeed closed.

b) Show that a subset E is closed if and only if E = E.

c) Show that x ∈ E if and only if every neighborhood of x contains some element

y ∈ E. Deduce that E′ ⊆ E.

d) Show that E = E ∪ E′. This means that to find the closure of E, you simply

need to add to E all of its limit points.

e) Suppose that E is a bounded, nonempty subset of R. Prove then, that both

sup(E) ∈ E and inf(E) ∈ E.

5 Real-valued Sequences

Much of the results from the standard calculus class, such as continuity, differentiation, and

even integration are developed with the use of ‘limits’. For example, it might be familiar

that a function f is continuous at x = a if lim
x→a

f(x) = f(a) or that f is differentiable at

x = a if the limit lim
x→a

f(x)−f(a)
x−a exists. But what does all of this actually mean? What does

it mean for x to approach a (x→ a)? What does it mean for a limit to exist? The tool for

dealing with these limits is sequences, and in our case, sequences of real numbers.
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Definition 5.1: Real-valued Sequences

A sequence of real numbers is a function f from N to R. In this way, for each n ∈ N,

f(n) = xn for xn ∈ R.

The common notation we will use, however, gets rid of f altogether and denotes the

sequence as

(xn)n∈N = (x1, x2, x3, . . .)

In general, sequences can be functions from the natural numbers into any set X. We

can examine sequences of functions, sequences of matrices, or even sequences of U.S. cities

if we want:

(f1, f2, f3, . . .)(
( 1 4
6 2 ) ,

(
4 −1
0 0

)
, ( 1 0

0 1 ) , . . .
)

(Annapolis,Salt Lake City,Tempe, . . .)

Of course, we will only be focused on sequences of real numbers as stated above. It is

important to note in any case that a sequence also assumes the order of the natural numbers,

we cannot simply switch around elements of these ‘lists’. Unlike sets, sequences are changed

when the order of elements is changes.

The primary question of interest for sequences of real numbers is: where do they ‘go’?

A perhaps familiar result is that for the sequence ( 1
n )n∈N = (1, 12 ,

1
3 , . . .),

lim
n→∞

1

n
= 0

Although 1
n is never 0 for any n ∈ N, it seems that as n gets larger, the terms of the sequence

get closer and closer to 0, arbitrarily so. Three important notions arise in the discussion of

this specific sequence:

• The 1
n elements get ‘close’ to 0. The distance from 1

n to 0,
∣∣ 1
n − 0

∣∣ appears to get

small.

• This distance
∣∣ 1
n − 0

∣∣ is arbitrarily small. For any positive number r > 0 (no matter

how small) we can find an N ∈ N such that
∣∣ 1
N − 0

∣∣ = 1
N < r using the Archimedean

Property (Theorem 3.17).

• This N depends on our arbitrary small number r, and not the other way around.

Although we have just considered the sequence ( 1
n )n∈N ‘going’ to the number 0, we incor-

porate these three points in the standard definition of an arbitrary sequence converging to

a point in R.
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Definition 5.2: Sequence Convergence

A sequence (xn)n∈N converges to a ∈ R if and only if the following is true: for all

ε > 0, there exists a natural number N ∈ N such that for all n ≥ N ,

|xn − a| < ε.

We say that (xn)n∈N is convergent if and only if there exists an a ∈ R such that

(xn)n∈N converges to a. In this case, we say that lim
n→∞

xn = a and that a is the limit

of the sequence (xn)n∈N.

We emphasize some of the subtleties of this definition:

• In order to talk about convergence of a sequence, we need to know the point or have

a guess about the point a to which it converges. If we do not have a guess at its limit,

we cannot prove that (xn)n∈N converges.

• Do not worry about the variable ε. It is only the standard notation for a small, positive

real number. We could have used any other letter of symbol if we wanted.

• Again, we need to assume that ε can be any positive real number first, and then find

some way of getting N to make the absolute value inequality work, not the other way

around.

• We used a definite article ‘the’ when defining a limit of (xn)n∈N, implying that a is

the only limit of the sequence if it is convergent. We prove this claim now.

Theorem 5.3: Unique Limits

If (xn)n∈N converges to a ∈ R, then a is unique.

Proof. For uniqueness proofs in general, we suppose that two real numbers satisfy the given

property and show they must be equal. So suppose that (xn)n∈N converges to the real

numbers a and b. We apply Exercise 1 of this section’s exercises to |a− b|. Let ε > 0 be

arbitrary to show that |a− b| < ε. Since ε > 0, ε
2 > 0 as well and we use ε

2 in Definition

5.2. Then we know there exists a natural number Na such that |xn − a| < ε
2 for all n ≥ Na

and there exists a natural number Nb such that |xn − b| < ε
2 for all n ≥ Nb. We define
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Figure 10: An ε
2 or ε

3 argument

N := max{Na, Nb}. Then, for all n ≥ N , it follows that

|a− b| = |a− xn + xn − b|

≤ |xn − a|+ |xn − b| (Triangle Inequality)

<
ε

2
+
ε

2
= ε.

Therefore, since ε was arbitrary, by Exercise 1, we have that a− b = 0 or rather that a = b.

It follows that the limit of a sequence is unique.

For this proof, we used the common ‘ ε2 argument’, an indispensable tool in MAT 370.

Since we knew that (xn)n∈N converged to a and b by hypothesis, we were able to use any

positive number given Definition 5.2, rather than prove it using an arbitrary positive number.

Further, when we gained our natural numbers Na and Nb guaranteed by Definition 5.2, we

cannot be sure they are equal. However, since both conditions depended on all n ≥ Na

and all n ≥ Nb, both would be satisfied simultaneously when n ≥ max{Na, Nb} since

max{Na, Nb} is greater than or equal to both Na and Nb. This is another important trick

of MAT 370: choosing a new natural number that is the maximum of a finite number of

natural numbers. We will use it and the ‘ ε2 argument’ often. Finally, from Theorem 3.5.5,

we were able to split |a− b| into two quantities that we knew were less than ε
2 and thus their

sum would be less than ε. This is exactly the ‘ ε2 argument’. We leave a visual in Figure 10

to clarify what is going on and even show that it can be done for 3 or more arbitrarily close

points.

To appeal to our work done in the previous chapter, we provide an alternate character-

ization of convergence that has to do with neighborhoods of the limit point and leads to a

more visual understanding of sequence convergence:

Theorem 5.4: Alternate Convergence Characterization

A sequence (xn)n∈N converges to a ∈ R if and only if for every neighborhood U of

a, only finitely many elements of the sequence fall outside U .
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Proof. For the forward direction, we suppose that (xn)n∈N converges to a as in Definition

5.2 and let U be an arbitrary neighborhood of a. Then we know there exists an ε > 0 such

that (a − ε, a + ε) ⊆ U from Definition 4.6. Since ε > 0, we know from Definition 5.2 that

there exists an N ∈ N such that for all n ≥ N , |xn − a| < ε. The key here is noting that

|xn − a| < ε if and only if a − ε < xn < a + ε if and only if xn ∈ (a − ε, a + ε). Therefore,

for all n ≥ N xn ∈ U since (a− ε, a+ ε) ⊆ U . The finitely many {x1, x2, . . . , xN−1} may or

may not also lie in U , but we know that, at most, only finitely many will be outside of U .

This is exactly what we needed to show for the forward direction.

For the converse direction, we suppose the statement about neighborhoods and let ε > 0

be arbitrary as in Definition 5.2. Well, we know that (a−ε, a+ε) is a neighborhood of a since

it is an open interval containing a and thus, by hypothesis, there exist a finite number of xn

that are not in (a − ε, a + ε). We call these elements {xn1
, xn2

, . . . , xnk
}. We do not know

which natural numbers they correspond to, but we know there are a finite number k of them.

For Definition 5.2, we need one natural number above which everything works. As above,

we choose N = max{n1, n2, . . . , nk}+ 1 since there are only finitely many natural numbers

to choose from. Thus, since N is the max of all these faulty ni plus 1, xn ∈ (a − ε, a + ε)

for all n ≥ N . As in the forward direction, for all n ≥ N ,

xn ∈ (a− ε, a+ ε), which implies |xn − a| < ε,

exactly what we wanted to show for Definition 5.2.

This Theorem gives us a different interpretation of convergence that may be easier to

visualize graphically. If the sequence (xn)n∈N converges to a ∈ R, we have that for every

ε > 0, the neighborhood (a− ε, a+ ε) contains all but finitely xn members of the sequence.

As in [6], we call these open interval neighborhoods ε-strips of a. As we have hinted at,

lim
n→∞

1
n = 0 (see Exercise 2), and thus, for any ε-strip (−ε, ε) around 0, the strip contains all

but finitely many of the xn = 1
n . We illustrate this in Figure 11a with ε = 1, in Figure 11b

with ε = 0.1, and in Figure 11c with ε = 0.03.

For each given ε, the N in red is the smallest natural number such that xn = 1
n is

contained in the yellow ε-strip for all n ≥ N . The finitely many elements are the elements

of the sequence that come before N , (there are only N − 1 of them). It is important again

to note that the N depends on the ε given. In this case with xn = 1
n , the smaller the ε, the

‘further’ we need to go out to find the appropriate N ∈ N that satisfies what we want.

With hopefully a better understanding of the mechanics of convergence sequences, we

prove a lemma about convergent sequences that will help us with later results.
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(a) ε-strip of 1 around 0

(b) ε-strip of 0.1 around 0

(c) ε-strip of 0.03 around 0

Figure 11: Some ε-strips of 0 and the sequence xn = 1
n

Lemma 5.5: Convergent Sequences are Bounded

a) If the sequence (an)n∈N converges to a, then the set {an : n ∈ N} is a bounded

subset of R.

b) If the sequence (bn)n∈N converges to b, and, with bn 6= 0 for all n ∈ N and

b 6= 0, then the set { 1
bn

: n ∈ N} is a bounded subset of R.

Proof.

a) Suppose lim
n→∞

an = a. Since this is our hypothesis, we can claim something about any

positive number. We choose our favorite, ε = 1. Thus, there exists an N ∈ N such

that |an − a| < 1 for all n ≥ N . Using the reverse triangle inequality from Theorem

3.5, we have that |an| − |a| ≤ |an − a| < 1, or rather, |an| < |a| + 1 for such n ≥ N .

So for all n ≥ N , we have the upper bound |a|+ 1 > 0 of an. To deal with the finitely

many other values of n, we simply choose M = max{|a1| , |a2| , . . . , |aN−1| , |a| + 1]}
Therefore, M > 0 as well, and it follows that for all n ∈ N, |an| ≤ M . Hence the set
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of all sequence elements {an : n ∈ N} is bounded.

Figure 12: Proof of (a) with an ε-strip argument

b) For this part, we again know that lim
n→∞

bn = b but that all of the bn and b are nonzero.

We use a special positive number for this part, ε = |b|
2 . Thus, there exists an N ∈ N

such that |bn − b| < |b|
2 for all n ≥ N . Using the same techniques this implies that

|bn| = |(bn − b) + b|

≥ |b| − |bn − b|

> |b| − |b|2 = |b|
2 .

Therefore, for all n ≥ N , we have that |bn| > |b|
2 , or rather, 1

|bn| <
2
|b| , and we have

a bound on 1
bn

for all n ≥ N . Again, we choose M = max{ 1
|b1| ,

1
|b2| , . . . ,

1
|bN−1| ,

2
|b|}

and it follows as above that
∣∣∣ 1
bn

∣∣∣ = 1
|bn| ≤ M for all n ∈ N. Hence, { 1

bn
: n ∈ N} is

bounded.

Essentially, this lemma tells us that convergent sequences cannot ‘blow up’ or be unbounded.

In the case of part (b), the reciprocal of sequence elements cannot be unbounded either.

As a side-note, this gives us a way to prove that sequences do not converge, from the

contrapositve of these statements. If a sequence is not bounded, then it is not convergent.

We now present one of the more important results concerned with real-valued sequences

which allows us to find limits quickly:
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Theorem 5.6: Algebra of Limits

Suppose that for sequences (an)n∈N and (bn)n∈N, that lim
n→∞

an = a and lim
n→∞

bn = b.

Then

1. lim
n→∞

αan = αa for any α ∈ R,

2. lim
n→∞

(an + bn) = a+ b,

3. lim
n→∞

anbn = ab, and

4. If bn 6= 0 for all n ∈ N and b 6= 0, then lim
n→∞

an
bn

= a
b .

Proof.

For each part of the theorem, we technically have new sequences we need to work with in the

definition of sequence convergence, but we will be using the fact that (an)n∈N and (bn)n∈N
converge, of course.

1. Let α ∈ R. If α = 0, then the sequence (αan)n∈N is a constant sequence of zeroes,

which converges to αa = 0. For the remainder of this part, α 6= 0. Let ε > 0. Since

α 6= 0, |α| > 0 and hence ε
|α| > 0 as well. We use this positive number in Definition

5.2 with (an)n∈N converging to a. There exists an N ∈ N such that for all n ≥ N ,

|an − a| < ε
|α| . It follows that for such n ≥ N ,

|αan − αa| = |α(an − a)|

= |α| |an − a|

< |α| · ε
|α|

= ε.

Thus lim
n→∞

αan = αa.

2. Let ε > 0. As above, there exist some Na, Nb ∈ N such that |an − a| < ε
2 for all

n ≥ Na and |bn − b| < ε
2 for all n ≥ Nb (get ready for an ε

2 argument). Thus, with

N = max{Na, Nb}, we have that for all n ≥ N ,

|(an + bn)− (a+ b)| = |(an − a) + (bn − b)|

≤ |an − a|+ |bn − b|

< ε
2 + ε

2 = ε.

Thus lim
n→∞

(an + bn) = a+ b.

3. We first note that if a = 0, then lim
n→∞

anbn = 0 = ab by Exercise 7. This follows

from the fact that (bn)n∈N is bounded since it is convergent. For the remainder of
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the proof, we suppose that a 6= 0. Again, by Lemma 5.5, (bn)n∈N is bounded so that

there exists an M > 0 such that |bn| ≤ M for all n ∈ N. Thus, we have the positive

numbers ε
2M > 0 and ε

2|a| > 0 that we have picked so everything works out nicely.

The positive number ε
2M will be used with (an)n∈N: there exists an Na ∈ N such that

|an − a| < ε
2M for all n ≥ Na. Similarly, ε

2|a| will be used with (bn)n∈N: there exists

an Nb ∈ N such that |bn − b| < ε
2|a| for all n ≥ Nb. We pick N = max{Na, Nb}, so

that for all n ≥ N , we have that

|anbn − ab| =

∣∣∣∣∣∣∣anbn−bna+ bna︸ ︷︷ ︸
special 0

−ab

∣∣∣∣∣∣∣
= |bn(an − a) + a(bn − b)|

≤ |bn| |an − a|+ |a| |bn − b|

≤M |an − a|+ |a| |bn − b|

< M ε
2M + |a| ε

2|a| = ε
2 + ε

2 = ε.

Therefore, lim
n→∞

anbn = ab, as desired.

4. Again, if a = 0, lim
n→∞

an
bn

= a
b as above by Exercise 7. We suppose again that a 6= 0 for

the remainder of the proof. By Lemma 5.5, there exists an M > 0 such that 1
|bn| ≤M

for all n ∈ N. This time, our positive numbers are a bit more extravagant and the

algebra in the chain of inequalities is a bit more complex. We have that ε
2M > 0 and

thus, there exists an Na ∈ N such that |an − a| < ε
2M for all N ≥ Na. Similarly, since

ε|b|
2M |a| > 0 (given a, b 6= 0), there exists an Nb ∈ N such that |bn − b| < ε|b|

2M |a| for all

n ≥ Nb. Therefore, for all n ≥ max{Na, Nb},∣∣∣∣anbn − a

b

∣∣∣∣ =

∣∣∣∣anb− bnabnb

∣∣∣∣
=

∣∣∣∣anb− ab+ ab− bna
bnb

∣∣∣∣
=
|b(an − a)− a(bn − b)|

|bnb|

≤ |b| |an − a|+ |a| |bn − b|
|bnb|

=
1

|bn|
|an − a|+

|a|
|bn| |b|

|bn − b|

≤M |an − a|+
M |a|
|b|
|bn − b|

< M · ε

2M
+
M |a|
|b|
· ε |b|

2M |a|
=
ε

2
+
ε

2
= ε.
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Once again, our desired limit is proven.

These last two proofs of parts (3) and (4) may seem a bit confusing when considering

the choice of the positive numbers ε
2M or ε|b|

2M |a| that made everything work out. Another

common trick in a class like MAT 370 is to work out the scratch-work of the algebra be-

forehand to see what is needed to get everything to be less than ε. That is what we did

in the proofs; we just rewrote them to make it look like we got the special positive numbers

out of nowhere like magic. With these results on the algebra of limits try out Exercise 6 to

practice with some rational sequences!

This theorem on the algebra of limits is really only useful when we know that the

sequences we are adding, multiplying, or dividing were originally convergent. A ‘deep’

result in MAT 370, one that appeals to the Completeness Axiom of R, is a theorem that

tells us when certain sequences are convergent.

Definition 5.7: Monotone Sequences

A sequence (xn)n∈N is said to be monotone increasing if and only if xn ≤ xn+1

for all n ∈ N. Similarly, a sequence (yn)n∈N is said to be monotone decreasing

if and only if yn ≥ yn+1 for all n ∈ N. The term monotone is used in general if a

sequence is monotone increasing or decreasing.

In addition to this notion of monotonicity, there is another quality that a monotone

sequence needs that is necessary to guarantee convergence. This quality is boundedness.

We give a visualization. Suppose we have a monotone sequence that is bounded above (see

Figure 13). Then, informally, the sequence elements are ‘trapped’ and will continue to move

upward to the upper bound. It turns out that in cases like this, the limit of the sequence is

the supremum of the sequence elements, which we prove here:

Theorem 5.8: The Monotone Convergence Theorem

Suppose (xn)n∈N is a monotone increasing sequence that is bounded above. Then,

lim
n→∞

xn exists and is equal to sup{xn : n ∈ N}.

Proof. Since the sequence is bounded above by hypothesis, the set {xn : n ∈ N} is bounded

above and nonempty and thus by the Completeness Axiom, sup{xn : n ∈ N} exists and we

denote it by α ∈ R. We let ε > 0 to show that lim
n→∞

xn = α. Since α − ε < α and α is the

supremum, there exists an N ∈ N such that α − ε < xN by Theorem 3.12. For all n ≥ N ,

we also have that α − ε < xn since (xn)n∈N is monotone increasing. By the definition of α

as an upper bound, we know that xn ≤ α < α + ε for all n ∈ N and hence for all n ≥ N .
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Figure 13: A monotone, bounded above sequence

Thus, for n ≥ N , we have that α − ε < xn < α + ε ,which implies |xn − α| < ε. Therefore,

lim
n→∞

xn = α.

Using the Monotone Convergence Theorem, the convergence of many different sequences

can be proven. For example, many sequences defined recursively, i.e. xn+1 = f(xn), can be

shown to be monotone and bounded and thus convergent. See the exercises in this section

for some examples of this.

One last simple result in this section on sequences is appropriately named the Squeeze

Theorem. Imagine you have two sequences (an)n∈N and (cn)n∈N that both converge to x ∈ R
(see Figure 14). If another sequence (bn)n∈N satisfies an ≤ bn ≤ cn for all n ∈ N, then it

seems reasonable that (bn)n∈N would also converge to x. We give a more rigorous proof of

the result here:

Theorem 5.9: The Squeeze Theorem

Suppose that for the sequences (an)n∈N and (cn)n∈N, lim
n→∞

an = x = lim
n→∞

cn for

some x ∈ R. If (bn)n∈N is another sequence that satisfies an ≤ bn ≤ cn for all n ∈ N,

then lim
n→∞

bn = x as well.

Proof. We let ε > 0. By our hypothesis, we know that an − x ≤ bn − x ≤ cn − x. Since

(an)n∈N and (cn)n∈N are convergent, there exist Na, Nc ∈ N such that −ε < an − x < ε

for all n ≥ Na and −ε < cn − x < ε for all n ≥ Nc. Thus, with N = max{Na, Nc}, when
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Figure 14: A Squeeze Theorem Visualization

n ≥ N , both inequalities are satisfied simultaneously, and thus

−ε < an − x ≤ bn − x ≤ cn − x < ε,

which implies |bn − x| < ε. Therefore, lim
n→∞

bn = x, as desired.

5.1 Subsequences

Another tool at our disposal in MAT 370 is the notion of subsequences of a sequence

(xn)n∈N. If you imagine the sequence (xn)n∈N as a list (x1, x2, x3, . . .), a subsequence is any

other list of elements that we select where the indices are increasing, i.e.

(x1, x3, x5, x7, . . .),

(x4, x35, x102, x7,589, . . .), or even,

(x1, x2, x3, x4, . . .) = (xn)n∈N .

These would all be subsequences of (xn)n∈N. Note that each of these subsequence is a

sequence in and of itself, and thus we can discuss whether or not it converges just as we

may talk about (xn)n∈N converging or not. We give our official definition of subsequences

here:
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Figure 15: An alternating sequence

Definition 5.10: Subsequences

Let (xn)n∈N be a sequence and let (nk)k∈N be a strictly increasing sequence of natural

numbers, i.e. n1 < n2 < n3 < · · · . The sequence where we only look at the sequence

elements at the given nk indices, (xnk
)k∈N, is called a subsequence of (xn)n∈N.

We give a simple example of a sequence that does not converge yet has convergent subse-

quences.

Example 5.11: An Alternating Sequence

Consider the sequence (xn)n∈N given by xn = (−1)n for all n ∈ N (see Figure 15).

Show that (xn)n∈N does not converge to 1 or −1, but has subsequences that do.

Proof. To deal with (xn)n∈N not converging to 1, we pick a bad ε0, which in this case we pick

to be ε0 = 1 and let n ∈ N (all of this is coming from negating Definition 5.2). If n is even,

then xn = 1 and we pick deal with n+ 1. It follows that |xn+1 − 1| = |−1− 1| = 2 > ε0. If

n is odd to begin with, then |xn − 1| = |−1− 1| = 2 > ε0 as well. It follows that (xn)n∈N
does not converge to 1 and a similar argument follows for why it does not converge to −1

either.

For the convergent subsequences, if we take the subsequence of all even indices, we have

that this sequences is a constant sequence of ones and thus converges to 1. Alternatively, if

we take the sequence of all odd indices, we have that this sequences is a constant sequence

of negative ones and thus converges to −1.
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This example is a good indicator to an essential theorem relating sequence convergence

and subsequence convergence:

Theorem 5.12: Subsequence and Sequence Convergence

A sequence (xn)n∈N converges to x ∈ R if and only if every subsequence (xnk
)k∈N of

(xn)n∈N converges to x.

Proof. The converse direction is easy: if every subsequence converges to x, then (xn)n∈N
converges to x since it is a subsequence of itself, as noted in the introduction to this section

on subsequences.

For the forward direction, we suppose lim
n→∞

xn = x, pick an arbitrary subsequence

(xnk
)k∈N, and let ε > 0 to show convergence. Since lim

n→∞
xn = x, there exists an N ∈ N

such that |xn − x| < ε for all n ≥ N . A general fact about sequences is that nk ≥ k for

the all subindices of the subsequence. Since the nk are increasing, the first subindex n1 ≥ 1

since it is a natural number, but the second subindex n2 ≥ 2 since it is strictly greater than

n1. It of course can equal 2, so we cannot guarantee strict inequalities. However, we do not

need them. For all k ≥ N , we have that nk ≥ k ≥ N as well and thus,

|xnk
− x| < ε,

since these nk are greater than or equal to N as well.

We give a major result of this theorem as a corollary even through it follows immediately

from being the contrapositive of the theorem:

Corollary 5.13: (xn)n∈N Not Converging

A sequence (xn)n∈N is not convergent if and only if there exist two subsequences that

converge to different numbers.

In general, it is hard to prove that a sequence (xn)n∈N does not converge from just negating

the definition: something needs to be checked for all real numbers!. However, if you can

find two convergent subsequences that converge to different numbers, then you are done.

We could have used this corollary to prove Example 5.11 quickly.

The ’deep’ result of this section is attributed to the Bohemian mathematician Bernard

Bolzano who proved it as a lemma to the Intermediate Value Theorem in 1817. It was

later proved by German mathematician Karl Weierstrass in its own right some 50 years

later. The theorem itself is connected to the ‘complete’ nature of R, as described in Chapter

2. We have already seen in an example that the bounded sequence xn = (−1)n has a
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convergent subsequence. In fact, the Bolzano-Weierstrass Theorem guarantees this fact for

any arbitrary bounded sequence:

Theorem 5.14: The Bolzano-Weierstrass Theorem

Every bounded sequence (xn)n∈N has some convergent subsequence (xnk
)k∈N.

We first prove a lemma about arbitrary sequences that will allow us to apply the Mono-

tone Convergence Theorem.

Lemma 5.15: Monotone Subsequences

Every sequence has a monotone subsequence.

Proof. Let (xn)n∈N be an arbitrary sequence of real numbers. For this proof, we call an

element xm of (xn)n∈N a peak if xm ≥ xn for all n > m. We now break into two cases to

construct monotone subsequences of (xn)n∈N

Case 1: (xn)n∈N has infinitely many peaks. Set n1 ∈ N as the smallest natural number such

that xn1
is a peak. Then xn1

≥ xn for all n ≥ n1. Next, pick n2 to be the smallest

natural number not equal to n1 such that xn2
is a peak. It follows that n1 < n2 so

that xn1
≥ xn2

and xn2
≥ xn for all n ≥ n2. Suppose that for an arbitrary k ∈ N,

xn1
, xn2

, . . . , xnk
are peaks chosen as above, xn1

≥ xn2
≥ · · ·xnk

. Since there are

infinitely many peaks, we are able to pick a natural number nk+1 larger than nk

such that xnk+1
is a peak and xnk

≥ xnk+1
. By induction, this gives us a monotone

decreasing subsequence (xnk
)k∈N.

Figure 16: A monotone decreasing subsequence

Case 2: (xn)n∈N has only finitely many peaks. Suppose our finitely many peaks are labeled as

xn1
, xn2

, . . . , xnk
with n1 < n2 < · · · < nk. We set m1 := nk + 1. so that xn is not a
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peak for all n ≥ N . Starting with xm1 , we have that there exists an m2 > m1 such

that xm1 < xm2 , since xm1 is not a peak. Further, since xm2 is not a peak, there exists

an m3 > m2 such that xm2 < xm3 . We continue inductively to gain a subsequence

(xmk
)k∈N such that xm1 < xm2 < xm3 < · · · , i.e. is strictly increasing.

Figure 17: A monotone increasing subsequence

We now return to the proof of the Bolzano-Weierstrass Theorem:

Proof. Let (xn)n∈N be an arbitrary bounded sequence of real numbers. Then by Lemma

5.15, there exists some monotone subsequence (xnk
)k∈N of (xn)n∈N. Since the original

sequence (xn)n∈N is bounded, (xnk
)k∈N is as well. By the Monotone Convergence Theorem,

(xnk
)k∈N is convergent and the result follows.

5.2 Cauchy Sequences

The last type of real-valued sequences we will investigate in this chapter are called Cauchy

sequences. Unlike convergent sequences, Cauchy sequences need not have a point that they

converge to. However, for a Cauchy sequence (xn)n∈N, the xn terms get arbitrarily close to

each other as n approaches infinity. The terms of a convergent sequence get arbitrarily

close to the limit as n approaches infinity. Here is the official definition of a Cauchy sequence:

Definition 5.16: Cauchy Sequences

A sequence is said to be Cauchy if and only if for all ε > 0, there exists an N ∈ N
such that

|xm − xn| < ε

for all m,n ≥ N .

The condition here that |xm − xn| < ε for all m,n ≥ N is crucial yet subtle. This implies

that any two elements past the special xN are less than ε apart. Of course, if a sequence
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is Cauchy, then subsequent terms xn and xn+1 will be less than ε apart for all n ≥ N .

However, the converse is not true. Showing that |xn − xn+1| < ε for all n ≥ N does not

imply that (xn)n∈N is Cauchy, in general (see Exercise 15 for an example of this).

We give two lemmas that will help us show that being Cauchy is in fact no different than

being convergent when talking about sequences of real numbers.

Lemma 5.17: Convergent Implies Cauchy

Every convergent sequence is Cauchy.

Proof. Suppose (xn)n∈N is convergent such that lim
n→∞

xn = x. To show Cauchy, we let ε > 0.

Then, there exists a N ∈ N such that |xn − x| < ε
2 (get ready for an ε

2 argument). Thus,

for any two m,n ≥ N , we have that

|xm − xn| = |(xm − x+ x− xn|

= |(xm − x)− (xn − x)|

≤ |xm − x|+ |xn − x|

< ε
2 + ε

2 = ε.

Thus, (xn)n∈N is Cauchy.

Just as with convergent sequences, it can be shown that Cauchy sequences form bounded

subsets of R as well.

Lemma 5.18: Cauchy Sequences are Bounded

For any Cauchy sequence (xn)n∈N, the set {xn : n ∈ N} is a bounded subset of R.

Proof. We use a similar technique as with Lemma 5.5. Since we know that (xn)n∈N is

Cauchy, we pick our favorite positive number ε = 1 to start building an upper bound. Thus,

there exists an N ∈ N such that |xm − xn| < 1 for all m,n ≥ N . We have that for all

n ≥ N ,

|xn| = |xn − xN + xN |

≤ |xn − xN |+ |xN |

< 1 + |xN | .

Since this xN is fixed, 1 + |xN | > 0 is still a valid upper bound for the xn, n ≥ N , for the

finitely many n ≤ N − 1, we again pick M = max{|x1| , |x2| , . . . , |xN−1| , 1 + |XN |} > 0.

Thus |xn| ≤M for all n ∈ N and it follows that {xn : n ∈ N} is bounded.
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The ‘deep’ result of this section on sequences is that a sequence is Cauchy if and only

if it is convergent. Thus, if you can get your hands on a Cauchy sequence of real numbers

(xn)n∈N, which might be easier to do in practical situations, then you are guaranteed the

existence of an x ∈ R such that lim
n→∞

xn = x.

Theorem 5.19: Cauchy-Convergent Equivalence

A sequence of real numbers is Cauchy if and only if it is convergent.

Proof. The converse direction has already been proven with Lemma 5.17.

For the forward direction, suppose that (xn)n∈N is Cauchy. By Lemma 5.18, (xn)n∈N
is bounded, and thus by the Bolzano-Weierstrass Theorem, there exists a convergent sub-

sequence (xnk
)k∈N of (xn)n∈N. By Exercise 16, which we leave to the reader to prove, it

follows that entire (xn)n∈N is convergent as well.

5.3 Exercises

1. Show that |x| < ε for all ε > 0 if and only if x = 0.

2. Prove that lim
n→∞

1
n = 0. For the sequence xn = 1

n , find the smallest N ∈ N such that

xn = 1
n ∈ (−ε, ε) for all n ≥ N , with ε = 0.005, ε = 0.0006, and ε = 0.00007.

3. Prove that the sequence xn = n2+n+1
n+1 is not convergent.

4. a) State what it means for a sequence (xn)n∈N to not converge to a point a ∈ R by

negating Definition 5.2 of sequence convergence.

b) For the sequence given by

xn =

{
1 n is a multiple of 3
1
n else

show that (xn)n∈N is bounded, but does not converge to 0. Hence, unbounded

sequences are not the only sequences that do not converge.

5. Suppose that two convergent sequences (xn)n∈N and (yn)n∈N satisfy xn ≤ yn for all

n ∈ N. Then lim
n→∞

xn ≤ lim
n→∞

yn.

6. Prove that

a) lim
n→∞

1
nk = 0 for any k ∈ N.

b) lim
n→∞

a1n
2 + b1n+ c1

a2n2 + b2n+ c2
=
a1
a2

.
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c) lim
n→∞

P (n)

Q(n)
=

leading coefficient of P (n)

leading coefficient of Q(n)
, where P (n) and Q(n) are two polyno-

mials in n, both having degree k ∈ N.

d) lim
n→∞

a1n+ b1
a2n2 + b2n+ c2

= 0.

e) lim
n→∞

P (n)

Q(n)
= 0, where P (n) and Q(n) are two polynomials in n such that the

degree of P (n) is less than the degree of Q(n).

7. Suppose that for the sequence (an)n∈N, lim
n→∞

an = 0. If (bn)n∈N is any bounded

sequence, show that lim
n→∞

anbn = 0 as well.

8. Prove the Monotone Convergence Theorem for sequences that are monotone decreasing

and bounded below.

9. Using the Monotone Convergence Theorem, prove that the following sequences defined

recursively are convergent and find their limit using the algebra of limits:

a) x1 = 2 and xn+1 = 2− 1
xn

for all n ∈ N.

b) x1 =
√

2 and xn+1 =
√

2 + xn for all n ∈ N.

c) x1 = 2 and xn+1 = 1
3−xn

for all n ∈ N. Note: This sequence (xn)n∈N is a sequence

of rational numbers whose limit is not a rational number. The Completeness

Axiom for the real numbers is critical.

10. Using the Monotone Convergence Theorem, show that for 0 ≤ a < 1, lim
n→∞

an = 0.

11. Using the Squeeze Theorem, prove that lim
n→∞

sin(n)
n = 0.

12. Show that the sequence (xn)n∈N given by xn = sin(πn2 ) is not convergent, but does

have subsequences that converge to 0, 1, and −1.

13. Suppose that the sequence (xn)n∈N is unbounded. Show that there exists some sub-

sequence (xnk
)k∈N of (xn)n∈N that satisfies lim

k→∞
1
xnk

= 0.

14. Prove that the Bolzano-Weierstrass Theorem is logically equivalent to the following

statement:

every bounded, infinite subset of R has a limit point.

15. Consider the sequence (xn)n∈N given by the pattern

(0, 12 , 1,
2
3 ,

1
3 , 0,

1
4 ,

2
4 ,

3
4 , 1,

4
5 ,

3
5 , . . .) (see Figure 18).
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Figure 18: The sequence (xn)n∈N

Prove that (xn)n∈N satisfies the following property:

for all ε > 0, there exists an N ∈ N such that |xn − xn+1| < ε for all n ≥ N,

but that (xn)n∈N is not Cauchy.

16. If a sequence (xn)n∈N is Cauchy and has some convergent subsequence, show that

(xn)n∈N is convergent.

17. Prove that a sequence of real numbers is Cauchy if and only if every subsequence is

Cauchy.

18. Show that instead of the Completeness Axiom, we can prove the Archimedean Prop-

erty by supposing the Monotone Convergence Theorem instead.

6 Continuity

Continuous functions are perhaps the bread and butter of calculus classes and for the results

we know and love. These functions behave as we expect they should: one can draw a

continuous function without lifting their pen from the page. This more intrinsic definition

of continuity needs to be made mathematically rigorous in order to prove functions are

continuous and to prove things about continuous functions.
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Definition 6.1: Continuity

Let f : D → R, where D ⊆ R. We say that f is continuous at x0 ∈ D if and only

if for all ε > 0, there exists a δ > 0 such that for all x ∈ D,

|x− x0| < δ implies |f(x)− f(x0)| < ε.

We say f continuous if and only if it is continuous at every x ∈ D.

What this definition is telling us is that a function is continuous if the outputs are

arbitrarily close if we can restrict the inputs to a certain interval, (x0− δ, x0 + δ). We prove

the continuiuty of an important function and by negating Definition 6.1, we can begin to

look at non examples of continuity:

Example 6.2: Absolute Value is Continuous

The function f(x) = |x| for all x ∈ R is continuous.

Proof. To show continuity via Definition 6.1, we let c ∈ R and ε > 0 be arbitrary. It turns

out that with the absolute value function δ = ε > 0 works. Thus, for all x ∈ R such that

|x− c| < δ we have that

|f(x)− f(c)| = ||x| − |c|| ≤ |x− c| < δ = ε.

The first inequality is the reverse triangle inequality from Theorem 3.5.

Example 6.3: Non-continuous Functions

Show that

1. f(x) =

{
0 x ≤ 1

1 x > 1
is not continuous at 1.

2. (Dirichlet’s function) f(x) =

{
1 x ∈ Q
0 x 6∈ Q

is not continuous at any c ∈ R.

3. f(x) =

{
x x ∈ Q
−x x 6∈ Q

is continuous at 0 and nowhere else.

Proof. 1. In the negation of Definition 6.1, our faulty ε0 is ε0 = 1
2 . We let δ > 0. Then

with the point 1 + δ
2 ,
∣∣1 + δ

2 − 1
∣∣ = δ

2 < δ but
∣∣f(1 + δ

2 )− f(1)
∣∣ = |1− 0| = 1 ≥ ε0.

For continuity elsewhere, note that over the intervals (1,∞) and (−∞, 1, f is constant

(either 1 or 0, respectively) and hence is continuous by Exercise 1.
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2. First, we suppose that q ∈ Q so that f(q) = 1. Setting ε0 = 1
2 , we know that for

all δ > 0, there exists an irrational number ξδ ∈ (q − δ, q + δ) by the density of the

irrationals. It follows that |ξδ − q| < δ, but |f(ξδ)− f(q)| = |0− 1| = 1 ≥ ε2. Thus,

f is not continuous on all of Q since q was arbitrary. The proof is similar for the

irrational numbers, and by the density of the rationals, f is not continuous on all of

R \Q. Therefore, f is not continuous on all of R.

3. We first show that f is continuous at 0. Let ε > 0. Now, we let x ∈ R and suppose

that |x− 0| = |x| < ε. Regardless of x, we know that |f(x)− f(0)| = |f(x)| = |x|.
Therefore, |f(x)− f(0)| = |x| < ε and f is continuous at 0. We show that f is not

continuous on (0,∞); the negative side has a symmetric argument. Let q ∈ Q with q >

0. It turns out that for the negation of not continuous, q > 0 is also our faulty ε value.

We let δ > 0. As above, there exists a positive irrational number ξδ ∈ (q− δ, q+ δ), or

rather, |ξδ − q| < δ. However, |f(ξδ)− f(q)| = |−ξδ − q| = |ξδ + q| = ξδ + q > q. The

argument is analogous if we had started with an arbitrary positive irrational ξ instead

of q and the cases when q < 0 or ξ < 0 are similar as well.

Even without being continuous, we can still talk about a function ‘approaching’ a point

even it if might not be defined on that point. We now define what it means for the limit

lim
x→c

f(x) to exist.

Definition 6.4: Limit of a Function

Let f : D → R and let c be a limit point of D. We say that

lim
x→c

f(x) = L

if and only if for all ε > 0, there exists a δ > 0 such that for all x ∈ D,

0 < |x− c| < δ implies |f(x)− L| < ε.

We discuss some of the subtleties of this definition. First, why do we only consider

approaching a limit point? The natural numbers Z as a subset of R have no limit points.

For a function f : Z → R, what would we want lim
m→3

f(m) = L to satisfy? As in Theorem

5.3, we hope that a function should only approach one value. Since there are no limit points

of Z, 3 is not a limit point and thus there exists a neighborhood (3−ε0, 3+ε0) such that 3 is

the only integer in (3− ε0, 3+ ε0). Thus, for any L ∈ R and any ε > 0, that 0 < |m− 3| < ε0

implies f(x)− L < ε is vacuously true: there are no m ∈ Z such that 0 < |m− 3| < ε0.
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It follows that in this case, f approaches every real number as n approaches 3. This is

certainly not desirable and we restrict our discussion of function limits to limit points of D.

If this new notation of function limits is unfamiliar, no fear. We prove a lemma that

relates function limits of Definition 6.4 with sequences of real numbers that we have seen in

Chapter 5.

Lemma 6.5: Function Limits with Sequences

Let f : D → R and c be a limit point of D. The following statements are equivalent:

1. lim
x→c

f(x) = L.

2. For all sequences (xn)n∈N ⊆ D such that xn 6= c for all n ∈ N and lim
n→∞

xn = c,

lim
n→∞

f(xn) = L.

Proof. We first prove that (1) implies (2). Suppose lim
x→c

f(x) = L as in Definition 6.4 and

let (xn)n∈N be an arbitrary sequence of D such that xn 6= c for all n ∈ N and lim
n→∞

xn = c.

To prove (2), let ε > 0. By Definition 6.4, there exists a δ > 0 such that 0 < |x− c| < δ

implies |f(x)− L| < ε for all x ∈ D. Also, since lim
n→∞

xn = c, there exists an N ∈ N such

that |xn − c| < δ for all n ≥ N . Since xn 6= c for all n ∈ N, 0 < |xn − c| < δ for all n ≥ N .

Thus, by Definition 6.4, it follows that |f(xn)− L| < ε and thus lim
n→∞

f(xn) = L.

For (2) implies (1), we prove by contradiction. We suppose (2) and that lim
x→c

f(x) 6= L

by negating Definition 6.4. Then there exists an ε0 > 0 such that for all δ > 0, there exists

an xδ ∈ D such that 0 < |xδ − c| < δ but |f(xδ)− L| ≥ ε0. For this proof, we need to

contradict something about sequences and thus use δ = 1
n . Thus, for every n ∈ N, there

exists an xn ∈ D such that 0 < |xn − c| < 1
n but |f(xn)− L)| ≥ ε0. By construction, this

(xn)n∈N is a sequence of D such that xn 6= c for all n ∈ N and lim
n→∞

xn = c. However,

lim
n→∞

f(xn) 6= L since for ε0 > 0 and for all n ∈ N, |f(xn)− L| ≥ ε0. This is exactly the

negation of Definition 5.2 and hence is a contradiction to (2).

Another result that is helpful to have is similar to Theorem 5.6. We expect that function

limits behave as sequences should, and in fact, they do.
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Lemma 6.6: Algebra of Function Limits

Let f, g : D → R with D ⊆ R and c a cluster point of D. Further suppose that

lim
x→c

f(x) = L and lim
x→c

g(x) = M . Then

1. lim
x→c

αf(x) = αL for any α ∈ R.

2. lim
x→c

(f(x) + g(x)) = L+M .

3. lim
x→c

f(x)g(x) = LM .

4. lim
x→c

f(x)
g(x) = L

M if g(x) 6= 0 for all x ∈ D and M 6= 0.

Proof. We walk through the proof of the second result, but all other results follow sym-

metrically. We wish to show that lim
x→c

(f(x) + g(x)) = L + M = lim
x→c

f(x) + lim
x→c

g(x). By

Lemma 6.5, it suffices to show for all sequences (xn)n∈N of D with lim
n→∞

xn = c and xn 6= c

for all n ∈ N that lim
n→∞

(f(xn) + g(xn)) = L + M . So let (xn)n∈N be such a sequence. The

result follows almost immediately since we already know that f(x) approaches L and g(x)

approaches M . Thus, lim
n→∞

f(xn) = L and lim
n→∞

g(xn) = M . Now, since we can consider

the sequences (f(xn))n∈N and (g(xn))n∈N,

lim
n→∞

(f(xn) + g(xn)) = lim
n→∞

f(xn) + lim
n→∞

g(xn) = L+M.

by Theorem 5.6. The results from (1), (3), (4) can be proved in the same way.

Just as in Lemma 6.5, there is an equivalence for dealing with the continuity of a function

at a point in terms of real-valued sequences. Further, we examine the standard definition

of continuity seen in most calculus classes: that f is continuous at c if lim
x→c

f(x) = f(c). We

show that our definition of continuity is equivalent to this one.

Theorem 6.7: Continuity Equivalences

Let f : D → R and suppose that c is both an element of D as well as a limit point

of D. The following statements are equivalent:

1. f is continuous at c.

2. For all sequences (xn)n∈N ⊆ D such that lim
n→∞

xn = c, lim
n→∞

f(xn) = f(c).

3. lim
x→c

f(x) = f(c).

Proof. We have that (2) is equivalent to (3) by Lemma 6.5, replacing L with f(c). The

restriction for xn 6= c for all n ∈ N is not a problem since c ∈ D. If xN = c for some N ∈ N,

then f(xN ) = f(c), which implies |f(xN )− f(c)| < ε for all ε > 0.
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It is clear from Definitions 6.1 and 6.4 that (3) implies (1). We finish by showing that

(1) implies (2). Let (xn)n∈N be a sequence of D such that lim
n→∞

xn = c and let ε > 0. By

(1), there exists a δ > 0 such that for all x ∈ D, |x− c| < δ implies |f(x)− f(c)| < ε. Since

lim
n→∞

xn = c, there exists an N ∈ N such that |xn − c| < δ for all n ≥ N . Thus, for all such

n ≥ N , it follows that |f(xn)− f(c)| < ε, which implies lim
n→∞

f(xn) = f(c).

A different way of viewing this idea of continuity is noting that from (2) above, we may

write that for any sequence (xn)n∈N in D such that lim
n→∞

xn = c, then

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
.

Essentially, limits can ‘pass through’ continuous functions.

Now for some of the most important theorems of this section: some tools for constructing

continuous functions from functions that we know are continuous. These are the algebra of

contiuous functions, that is, adding, multiplying, and dividing continuous functions produces

continuous functions. Also, the composition of two continuous functions is continuous as

well.

Theorem 6.8: Algebra of Continuous Functions

Suppose f, g : D → R, c ∈ D, and c is a limit point of D. Suppose f and g are

continuous at c. Then,

1. αf + βg is continuous at c, for any α, β ∈ R.

2. fg is continuous at c.

3. If g(x) 6= 0 for all x ∈ D, then f
g is continuous at c.

Proof. For this proof, we need only use Theorem 6.7 and the Algebra of Limits from Chapter

5. We walk through the process with (1). Using Theorem 6.7, we suppose (xn)n∈N is a

sequence of D with lim
n→∞

xn = c. Since both f and g are continuous at c, then lim
n→∞

f(xn) =

f(c) and lim
n→∞

g(xn) = g(c). By the Algebra of Limits, we have that

lim
n→∞

(αf + βg)(xn) = lim
n→∞

(αf(xn) + βg(xn))

= α lim
n→∞

f(xn) + β lim
n→∞

g(xn)

= αf(c) + βg(c)

= (αf + βg)(c)

The proofs of (2) and (3) follow exactly the same argument, utilizing the Algebra of Limits

that we know exist from continuity.
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Theorem 6.9: Compositions of Continuous Functions

Let f : A → B and g : B → R for A,B ⊆ R. Suppose f is continuous at c ∈ A

and g is continuous at f(c) ∈ B. Then the composition g ◦ f : A → R given by

(g ◦ f)(x) = g(f(x)) for all x ∈ A is continuous at c.

Proof. This result follows by using Definition 6.1 a couple of times. Let ε > 0. Since g is

continuous at f(c), then there exists a δ > 0 such that for all y ∈ B, |y − f(c)| < δ implies

|g(y)− g(f(c))| < ε. Since f is continuous at c and δ > 0, there exists an η > 0 such that for

all x ∈ A, |x− c| < η implies |f(x)− f(c)| < δ. We emphasize that this η > 0 is what we

will be using to prove that g ◦ f is continuous. For this η > 0 and all x ∈ A, it follows that

by the two implications we have established, |x− c| < η implies |g(f(x))− g(f(c))| < ε.

This is exactly what we needed to show for g ◦f to be continuous at c by Definition 6.1.

These two results help us prove that many types of functions are continuous. For some

examples, see the exercises!

6.1 The Intermediate and Extreme Value Theorems

In this subsection, we prove some of the most important properties of continuous functions:

the Intermediate and Extreme Value theorems. The results of this section depend heav-

ily on domains of the form [a, b], closed, bounded intervals of R. These closed, bounded

intervals are special in that they are compact, a topological property of much important

in mathematics. Going through compactness is a bit past the scope of MAT 370, but just

know that these compact intervals play a key role in the results of this section.

Definition 6.10: The Intermediate Value Property

Let f : [a, b] → R. We say that f satisfies the Intermediate Value Property

if and only if for all y between f(a) and f(b), there exists an x ∈ (a, b) such that

f(x) = y.

Functions that satisfy the Intermediate Value Property need not be continuous, consider

the following example: f : [0, 2]→ R given by

f(x) =

{
x x ∈ [0, 1)

x− 1 x ∈ [1, 2].

This function f is not continuous at 1 but does satisfy the Intermediate Value Property:

every y-value between f(0) = 0 and f(2) = 1 is hit by some c ∈ (0, 2).
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Figure 19: A discontinuous function that satisfies the Intermediate Value Property

In order to prove our first result, the Intermediate Value Theorem, we prove a lemma

that is actually useful for proving the existence of roots of a function f : x-values such that

f(x) = 0.

Lemma 6.11: Finding Roots of a Function

Suppose f : [a, b] → R is continuous with f(a) < 0 < f(b). Then there exists

c ∈ (a, b) such that f(c) = 0.

Proof. We begin by defining the set N := {x ∈ [a, b] : f(x) ≤ 0}, which is nonempty since

a ∈ N and bounded above by b. By the Completeness Axiom, sup(N) exists and we call it

c. We have that c ∈ [a, b]. We suppose by contradiction that c = b. In this case, there exists

a sequence (xn)n∈N of elements of N such that lim
n→∞

xn = c since c is the supremum of N .

Since f is continuous we have that lim
n→∞

f(xn) = f(c) = f(b). This is the contradiction since

f(xn) ≤ 0 for all n ∈ N implies lim
n→∞

f(xn) ≤ 0 (see Exercise 5 from the previous chapter)

but f(b) > 0.

If c = a, then N = {a}, further contradicting the continuity of f . Since f is continuous

at a and f(a) < 0, then − f(a)2 > 0 and there exists a δ > 0 such that for all x ∈ [a, b]

with |x− a| < δ, then |f(x)− f(a)| < − f(a)2 . We have that a + δ
2 ∈ [a, a + δ) so that∣∣f(a+ δ

2 )− f(a)
∣∣ < − f(a)2 , which implies f(a+ δ

2 ) < f(a)
2 < 0. Essentially, by continuiuty,

of f we have found another element a + δ
2 ∈ N that contradicts N = {a}. It follows that

c ∈ (a, b).

We claim that f(c) = 0. From Exercise 1 in the previous chapter, we show that |f(c)| < ε

for all ε > 0. We let ε > 0 and note that since f is continuous at c ∈ [a, b], there exists a

δ > 0 such that for all x ∈ [a, b], |x− c| < δ implies f(x)− ε < f(c) < f(x) + ε.

By Theorem 3.12, we have that c − δ < c and thus there exists a y ∈ N such that

c − δ < y. It follows that c − δ < y ≤ c < c + δ and thus |y − c| < δ. By one side of our

continuity implication, f(c) < f(y) + ε ≤ ε for this y ∈ N .
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For the other inequality, we note that since c is the supremum of N , c + δ
2 is not a

member of N and thus f(c + δ
2 ) > 0. Further, since c + δ

2 ∈ (c, c + δ), we apply the other

side of our continuity implication: f(c) > f(c + δ
2 ) − ε > −ε. By these two established

inequalities, we have that |f(c)| < ε and our desired result f(c) = 0 is satisfied.

This lemma is a key tool for proving that certain functional equations have solutions. Check

out the Exercises of this section for some examples of this.

Theorem 6.12: The Bolzano Intermediate Value Theorem

Let f : [a, b]→ R is continuous. Then f satisfies the Intermediate Value Property.

Proof. We let y be an arbitrary point between f(a) and f(b). We suppose that f(a) < y <

f(b). We consider the function g : [a, b] → R given by g(x) = f(x) − y for all x ∈ [a, b].

This g is continuous by the algebra of continuous functions since f is and y is a constant.

Further, we have that g(a) = f(a) − y < 0 and g(b) = f(b) − y > 0. By Lemma 6.11, we

have that there exists a c ∈ (a, b) such that g(c) = 0. Thus, this c ∈ (a, b) satisfies f(c) = y.

and f satisfies the Intermediate Value Property.

In the case that f(a) > y > f(b), this is proven given the result of Exercise 6.

To summarize this result, we have that the continuous image of a closed, bounded interval

containing [min{f(a), f(b)},max{f(a), f(b)}] (see Figure 20).

Figure 20: A visualization of the Intermediate Value Theorem

We can take this result one step further with the next theorem of this section, the

Extreme Value Theorem. Not only does the continuous image of a closed, bounded interval

contain a closed, bounded interval; in fact, such a continuous image is a closed, bounded

interval. There exists c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].
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Theorem 6.13: The Extreme Value Theorem

Suppose f : [a, b] → R is continuous. Then there exists xm, xM ∈ [a, b] such that

sup{f(x) : x ∈ [a, b]} = f(xM ) = max{f(x) : x ∈ [a, b]} and inf{f(x) : x ∈ [a, b]} =

f(xm) = min{f(x) : x ∈ [a, b]}

Proof. We know that the domain [a, b] is bounded, but since f is continuous, we may show

that f is bounded, or rather that {f(x) : x ∈ [a, b]} is a bounded subset of R. We suppose by

contradiction that f is unbounded. In this case, for every n ∈ N, there exists an xn ∈ [a, b]

such that |f(xn)| > n. Since (xn)n∈N is a bounded sequence, by the Bolzano-Weierstrass

Theorem, there exists a convergent subsequence (xnk
)k∈N with lim

k→∞
xnk

= x0. Since f is

continuous, we have that lim
k→∞

f(xnk
) = f(x0). However, since this sequence (f(xnk

)k∈N

satisfies |f(xnk
)| ≥ nk ≥ k, it is unbounded and does not converge by Lemma 5.5. It follows

that f is bounded.

Therefore, E := {f(x) : x ∈ [a, b]} is both nonempty and bounded. By the Completeness

Axiom, both sup(E) = M and inf(E) = m exist. We prove that in the supremum case,

there exists some xM in [a, b] such that f(xM ) = M . By Theorem 3.12, we once again

know that since M is the supremum of E, there exists a sequence (xn)n∈N of elements of

E such that M − 1
n < f(xn) ≤ M for all n ∈ N. Since (xn)n∈N is bounded, there exists a

subsequence (xnk
)k∈N such that lim

k→∞
xnk

exists and we call this limit xM . By the Squeeze

Theorem and the continuity of f , lim
k→∞

f(xnk
) = f(xM ) = M and the result follows. The

proof for xm and the infimum is analogous; use the fact that there exists some sequence

with m ≤ xn < m+ 1
n for all n ∈ N.

The fact that these f(xM ) and f(xm) are the max and min of E, respectively follows

since f(xM ) and f(xm) are indeed elements of E.

To speak on this result, we can update Figure 20. The continuous image of a closed, bounded

interval is equal to a closed, bounded interval, namely [f(xm), f(xM )].

Figure 21: A visualization of the Extreme Value Theorem
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6.2 Uniform Continuity

For the final subsection of this chapter, we introduce a stronger notion of continuity. To

prove f : D → R is continuous on D, the proof following Definition 6.1 would begin with

an arbitrary x ∈ D and an arbitrary ε > 0. Thus, the choice of δ > 0 may depend on both

ε and x, the location at which we are examining the continuity of f . This stronger notion

of continuity, uniform continuity, requires the δ > 0 to only depend on ε. In other words,

the δ > 0 must work for all x ∈ D.

Definition 6.14: Uniform Continuity

We say that f : D → R is uniformly continuous on D if and only if for all ε > 0

there exists a δ > 0 such that for all x, y ∈ D,

|x− y| < δ implies |f(x)− f(y)| < ε

We expand on this definition. Although it does seem quite similar to Definition 6.1,

this definition requires something more from a function. In Definition 6.1, we are only

concerned with continuity at a point x ∈ D. Thus, the δ chosen may depend on ε and x:

δ(ε, x). However, for a function to be uniformly continuous on D, the δ value will depend

only on ε and must work for all x, y ∈ D: δ(ε).

With continuity, we have a technique from Theorem 6.7 to show that a function f : D →
R is not continuous at c ∈ D: if there exists a sequence (xn)n∈N in D such that lim

n→∞
xn = c

but lim
n→∞

f(xn) 6= f(c), then f is not continuous. There is an analogous result for showing f

is not uniformly continuous on D. However, since uniform continuity is a more demanding

property, so is this technique to show f is not uniformly continuous:

Lemma 6.15: Proving *not* Uniformly Continuous

Let f : D → R. Then f is not uniformly continuous if and only if there exists

sequences (xn)n∈N and (yn)n∈N of D and an ε0 > 0 such that lim
n→∞

|xn − yn| = 0 but

|f(xn)− f(yn)| ≥ ε0 for all n ∈ N.

Proof. We start with the converse direction, i.e. proving the negation of Definition 6.14. We

know from out lemma hypothesis that there exists an ε0 > 0 such that |f(xn)− f(yn)| ≥ ε0
for all n ∈ N. We let δ > 0. Since lim

n→∞
|xn − yn| = 0, there exists an N ∈ N such that

|xn − yn| < δ for all n ≥ N . Therefore, we take out problematic x, y ∈ D in the negation of

Definition 6.14 to be xN and yN . Thus, |xN − yN | < δ but |f(xN )− f(yN )| ≥ ε0. It follows

that f is not uniformly continuous on D.
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For the forward direction, we suppose that f is not uniformly continuous as in Definition

6.14. Thus, for every n ∈ N, δn = 1
n > 0 so that there exists xn, yn ∈ D such that |xn − yn| <

1
n but |f(xn)− f(yn)| ≥ ε0. It follows by the Squeeze Theorem that for the sequences

(xn)n∈N and (yn)n∈N of D, lim
n→∞

|xn − yn| = 0. We already have that |f(xn)− f(yn)| ≥ ε0

is satisfied for all n ∈ N and so our lemma hypothesis is satisfied.

Usually, functions that are not uniformly continuous on their domains have a ‘problem-

atic’ point. The trick to apply Lemma 6.15 is to create two distinct sequences that converge

to said point but whose functions values stay separated. We illustrate this with a classic

example. See the exercises for some more practice.

Example 6.16: f(x) = 1
x is not Uniformly Continuous

Consider the function f(x) = 1
x defined for all x > 0. Using Lemma 6.15, we prove

that f is not uniformly continuous on (0,∞).

Proof. The function f gets steep around 0 so we consider the two sequences (xn)n∈N and

(yn)n∈N of (0,∞) given by xn = 1
n and yn = 1

n+1 for all n ∈ N. We have that for all n ∈ N,

0 ≤ |xn − yn| =
∣∣∣ 1n − 1

n+1

∣∣∣ =
∣∣∣ 1
n(n+1)

∣∣∣ = 1
n2+n <

1
n .

By Exercise 5 in the previous chapter and the Squeeze Theorem, lim
n→∞

|xn − yn| = 0. How-

ever, we chose these sequences so that for all n ∈ N,

|f(xn)− f(yn)| = |n− (n+ 1)| = 1.

Thus, with ε0 = 1, it follows that f is not continuous on (0,∞). If we restrict the domain of

f to remove the problematic point 0, then f will be uniformly continuous. See the exercises

of this section.

The final result of this section has a similar feel to Theorem 5.19. Over closed, bounded

intervals of R it turns out that continuity and uniform continuity are one and the same. From

Exercise 8, we know that every uniformly continuous function is continuous. This additional

hypothesis of a closed, bounded interval domain is enough to get the other direction:

Theorem 6.17: Continuity on a Closed Interval

If f : [a, b]→ R is continuous, then f is uniformly continuous.
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We suppose by contradiction that f is not uniformly continuous. Then by Lemma 6.15,

there exist sequences (xn)n∈N and (yn)n∈N of [a, b] and an ε0 > 0 such that lim
n→∞

|xn − yn| = 0

but |f(xn)− f(yn)| ≥ ε0 for all n ∈ N. By the Bolzano-Weierstrass Theorem, there exists

a convergent subsequence (xnk
)k∈N with lim

k→∞
xnk

= c. We claim that for the same sub-

indices, lim
k→∞

ynk
= c as well. Let ε > 0. There exists K ′, N ∈ N such that |xnk

− c| < ε
2 for

all k ≥ K ′ and |xn − yn| < ε
2 for all n ≥ N . Thus, with K := max{K ′, N}, we have that

for all k ≥ K,

|ynk
− c| ≤ |ynk

− xnk
|+ |xnk

− c| < ε
2 + ε

2 = ε.

Since the absolute value function is continuous and f is continuous, it follows that

lim
k→∞

|f(xnk
)− f(ynk

)| = |f(x)− f(x)| ≥ ε0 > 0.

Of course, this is our contradiction, since |f(x)− f(x)| = 0.

6.3 Exercises

1. Show that both any constant function f(x) = c for c ∈ R and the identity function

given f(x) = x for all x ∈ R are continuous, using Definition 6.1.

2. (Thomae’s function) We define the function (see Figure 22) f : [0, 1]→ R by

f(x) =

{
1
q x = p

q in lowest terms, p ∈ Z, q ∈ N
0 x irrational

Show that f is continuous at every irrational number and is not continuous at every

rational number.

Figure 22: Thomae’s function

3. a) Show that f : R→ R given by f(x) = xn is continuous for every n ∈ N.

b) Prove that any polynomial P (x) =

n∑
k=0

ckx
k is continuous as a function on R.
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c) Prove that any rational function

g(x) =

∑n
k=0 ckx

k∑m
k=0 dkx

k

is continuous as a function on R \ {x ∈ R :

m∑
k=0

dkx
k = 0}.

4. a) Show that x 7→ sin(x) : R→ R is continuous.

b) Show that x 7→ cos(x) : R→ R is continuous.

c) Show that x 7→ tan(x) is continuous on the domain R \
{

(2k+1)π
2 : k ∈ Z

}
.

d) Deduce that all other trigonometric functions csc(x), sec(x), cot(x) are continuous

on their respective domains.

5. Consider the function f : [0, 2
π ]→ R] given by

f(x) =

{
sin( 1

x ) x ∈ (0, 1
π ]

−1 x = 0

(see Figure 23). Show that f is not continuous at 0 but does satisfy the Intermediate

Value Property.

Figure 23: A discontinuous sine wave

6. Extend Lemma 6.11 by proving the result in the case that f(a) > 0 > f(b).

7. a) Show that cos(x) = x has a solution in the interval [0, π2 ].
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b) Show that x5 − x4 + x3 − x2 + x has a root in the interval [−1, 1].

c) Show that any polynomial of odd degree has at least one real root.

8. Using Definitions 6.1 and 6.14, show that every function f : D → R that is uniformly

continuous on D is continuous on D.

9. As stated in Example 6.16, show that f(x) = 1
x defined for all x > 1 is uniformly

continuous.

10. Using Lemma 6.15, show that the f(x) = sin( 1
x ) defined on (0,∞) is continuous but

not uniformly continuous.

11. a) Show that if f : A→ B is uniformly continuous on A and g : B → R is uniformly

continuous on B, then g ◦ f : A→ R is uniformly continuous on A.

b Suppose that f : D → R and g : D → R are uniformly continuous on D. Prove

that αf + βg : D → R is uniformly continuous on D but that fg and f
g are not

in general.

7 Differentiation

The last three chapters of this supplement will cover some of the classic notions of calculus:

differentiation and integration, and explore the relationship between them. To begin with

differentiation, we consider a function f : D → R, with D ⊆ R. For c a limit point of D, we

will define the derivative of f at c, f ′(c), much like in an ordinary calculus class.

Definition 7.1: Differentiability at a Point

Let f : D → R, D ⊆ R and c ∈ D, with c a limit point of D. We say that f is

differentiable at c if and only if the limit

lim
x→c

f(x)− f(c)

x− c

exists. In this case, we call this limit f ′(c) or df
dx |x=c.

Right off the bat, we may introduce a result from the previous to deal with sequences

instead of function limits:
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Corollary 7.2: Sequential Characterization of a Derivative

A function f : D → R, D ⊆ R is differentiable at a limit point c of D if and only

if for every sequence (xn)n∈N of D with lim
n→∞

xn = c and xn 6= c for all n ∈ N, it

follows that

lim
n→∞

f(xn)− f(c)

xn − c
exists.

Proof. This is a direct application of Lemma 6.5 with g(x) = f(x)−f(c)
x−c . Then lim

x→c
g(x) =

f ′(c) exists if and only if for all such sequences,

lim
n→∞

g(xn) = lim
n→∞

f(xn)− f(c)

xn − c
= f ′(c)

exists.

This leads to our first example of a function that is not differentiable at a point: the absolute

value function.

Example 7.3: |x| not Differentiable at 0

The absolute value function is not differentiable at 0.

Proof. The trick here is to use Corollary 7.2. If f(x) = |x| were differentiable at 0 then for

every sequence (xn)n∈N of nonzero points converging to 0, we would have that lim
n→∞

|xn|−|0|
xn−0 =

f ′(0) since the limit exists and is unique. However, consider the two sequences xn = 1
n and

yn = − 1
n for all n ∈ N. We see that

lim
n→∞

|xn| − |0|
xn − 0

= lim
n→∞

1
n
1
n

= 1,

but

lim
n→∞

|yn| − |0|
yn − 0

= lim
n→∞

1
n

− 1
n

= −1.

Therefore, as these two limits differ, |x| cannot be differentiable at 0.

One of the first results linking differentiability and continuity is that being differentiable

at a point is stronger than being continuous at a point:

Theorem 7.4: Differentiable Implies Continuous

If f : D → R, D ⊆ R, is differentiable at c ∈ D, c a limit point of D, then f is

continuous at c.
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Proof. We show that lim
x→c

f(x) = f(c). Since f is differentiable at c, lim
x→c

f(x)−f(c)
x−c exists.

By the trick of multiplying by 1 = x−c
x−c ,

lim
x→c

(f(x)− f(c)) = lim
x→c

(x− c)f(x)− f(c)

x− c

= lim
x→c

(x− c) · lim
x→c

f(x)− f(c)

x− c
= 0 · f ′(c) = 0.

Since lim
x→c

(f(x)− f(c)) = lim
x→c

f(x)− f(c) = 0, it follows that lim
x→c

f(x) = f(c) and that f is

continuous at c.

Much like with continuous functions in Theorem 6.8, there is an algebra for functions

differentiable at a point c. However, the formulas for the derivative at a point c are not as

simple.

Theorem 7.5: Algebra of Differentiable Functions

Suppose f, g : D → R are both differentiable at a limit point c ∈ D ⊆ R. Then

1. f + g is differentiable at c with (f + g)′(c) = f ′(c) + g′(c),

2. fg is differentiable at c with (fg)′(c) = f(c)g′(c) + f ′(c)g(c),

3. if g(x) 6= 0 for all x ∈ D, then f
g is differentiable at c with

(
f
g

)′
(c) =

g(c)f ′(c)− f(c)g′(c)

(g(c))2
.

Proof. This proof will feel much like the proof of Theorem 5.6, with trickier algebra as we

go through the different function operations (multiplication and division).

1. To show f + g is differentiable at c, we note that

lim
x→c

(f + g)(x)− (f + g)(c)

x− c
= lim
x→c

f(x) + g(x)− (f(c) + g(c))

x− c

= lim
x→c

(
f(x)− f(c)

x− c
+
g(x)− g(c)

x− c

)
= lim
x→c

f(x)− f(c)

x− c
+ lim
x→c

g(x)− g(c)

x− c
= f ′(c) + g′(c)

We were able to split up the limit in the final line by Lemma 6.6 and since f ′(c)

and g′(c) both exist. So this limit involving f + g exists and we have a formula for

(f + g)′(c).
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2. For fg, we have that

lim
x→c

(fg)(x)− (fg)(c)

x− c
= lim
x→c

f(x)g(x)− f(c)g(c)

x− c

= lim
x→c

f(x)g(x)− f(x)g(c) + f(x)g(c)− f(c)g(c)

x− c

= lim
x→c

(
f(x)

g(x)− g(c)

x− c
+ g(c)

f(x)− f(c)

x− c

)
= lim
x→c

f(x) lim
x→c

g(x)− g(c)

x− c
+ g(c) lim

x→c

f(x)− f(c)

x− c
= f(c)g′(c) + f ′(c)g(c).

Again, the limit exists through algebraic manipulation and limit algebra. For the last

line, since f is differentiable and hence continuous at c, lim
x→c

f(x) = f(c).

3. For f
g , we compute:

lim
x→c

( fg )(x)− ( fg )(c)

x− c
= lim
x→c

f(x)
g(x) −

f(c)
g(c)

x− c

= lim
x→c

f(x)g(c)− f(c)g(x)

g(x)g(c)(x− c)

= lim
x→c

f(x)g(c)− f(x)g(x) + f(x)g(x)− f(c)g(x)

g(x)g(c)(x− c)

= lim
x→c

(
− f(x)

g(x)g(c)

g(x)− g(c)

x− c
+

g(x)

g(x)g(c)

f(x)− f(c)

x− c

)
= −f(c)g′(c)

(g(c))2
+
f ′(c)

g(c)

=
g(c)f ′(c)− f(c)g′(c)

(g(c))2
.

In addition to this algebra of differentiable functions, there is an analog to Theorem 6.9:

the Chain Rule. The composition of two differentiable functions is also differentiable, with

its own formula as well.

Theorem 7.6: The Chain Rule

Let f : D1 → R and g : D2 → R with f(D1) ⊆ D2 (g(f(x)) is defined for all x ∈ D1).

If f is differentiable at c ∈ D1, c a limit point of D1 and g is differentiable at f(c),

with f(c) a limit point of D2, then g ◦ f : D1 → R is differentiable at c and

(g ◦ f)′(c) = g′(f(c))f ′(c).
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Proof. To show g ◦ f is differentiable at c, we first define an auxiliary function h : D2 → R
given by

h(y) =

{
g(y)−g(f(c))
y−f(c) y 6= f(c)

g′(f(c)) y = f(c)
.

We notice this about h: since g is differentiable at f(c), lim
y→f(c)

h(y) = g′(f(c)) = h(f(c)) so

that h is continuous at f(c). Thus, since f is continuous at c, h ◦ f is continuous at c, by

Theorem 6.9. Therefore, with y = f(x) in the definition of h,

lim
x→c

g(f(x))− g(f(c))

x− c
= lim
x→c

h(f(x))(f(x)− f(c))

x− c

= lim
x→c

h(f(x)) lim
x→c

f(x)− f(c)

x− c
= h(f(c))f ′(c) = g′(f(c))f ′(c),

just as desired.

7.1 The Mean Value Theorem

With the previous two theorems, we have the tools to construct continuous and differentiable

functions from the sums, products, and compositions of functions we know to be continuous

and differentiable. For this subsection, we focus on major results if we are given differentiable

function to begin with. The first result is a deep theorem that makes sense graphically and

has a more or less simple proof. We first introduce a definition to help us describe special

points of a function rigorously.

Definition 7.7: Local Extrema

Let f : (a, b) → R. We say x0 is a local maximum (resp. minimum) of f if and

only if there exists a δ > 0 such that for all x ∈ (x0 − δ, x0 + δ),

f(x0) ≥ f(x) (f(x0) ≤ f(x)).

In general, a local extremum of f refers to either a local maximum or minimum

of f .

These local extrema are called local for a reason. They are not ‘global’ maxima or

minima, as in the Extreme Value Theorem, where f(xM ) ≥ f(x) for all x ∈ [a, b], for

example. In Figure 24, x0 and x1 are local extrema, but as you can see at the left and

right ends of the function, there are other points that reach higher and lower than f(x0)

and f(x1), respectively. With this notion of local maxima and minima of function, we prove
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Figure 24: A local maximum and minimum

a lemma about the derivative at local extrema that will be familiar from previous calculus

classes:

Lemma 7.8: Local Extrema Have Zero Derivative

Suppose f : (a, b)→ R is differentiable on (a, b) and x0 ∈ (a, b) is a local extremum

of f . Then f ′(x0) = 0.

Proof. We prove the case where x0 is a local maximum. The work for a local minimum

is analogous, but with a minus sign thrown in. Since x0 is a local maximum, there exists

a δ0 > 0 such that f(x) ≤ f(x0) for all x ∈ (x0 − δ0, x0 + δ0). It might be the case

that this interval (x0 − δ0, x0 + δ0) is not a subset of the domain (a, b). If so, we simply

define a new δ > 0 such that (x − δ, x + δ) ⊆ (a, b) ∩ (x0 − δ0, x0 + δ0). For example,

δ := min{x0 − a, b − x0, δ0} > 0 would work. We construct a sequence in (x0, x0 + δ) and

one in (x0 − δ, x0) as follows:

xn = x0 −
δ

2n
and yn = x0 +

δ

2n
, for all n ∈ N.

We note that by construction, lim
n→∞

xn = x0 = lim
n→∞

yn and that xn 6= x0 6= yn for all

n ∈ N. Since f is differentiable at x0,

lim
n→∞

f(xn)− f(x0)

xn − x0
= f ′(x0) = lim

n→∞

f(yn)− f(x0)

yn − x0
,

by Corollary 7.2. The key here is that f(xn)−f(x0) ≤ 0 and f(yn)−f(x0) ≤ 0 for all n ∈ N
since both (xn)n∈N and (yn)n∈N are sequences of (x0 − δ, x0 + δ). Finally, by construction,
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Figure 25: Constructing xn and yn

xn − x0 = − δ
2n < 0 and yn − x0 = δ

2n > 0 for all n ∈ N. Thus,

f(xn)− f(x0)

xn − x0
≥ 0 and

f(yn)− f(x0)

yn − x0
≤ 0

for all n ∈ N. We may now conclude that

0 ≤ lim
n→∞

f(yn)− f(x0)

yn − x0
= f ′(x0) = lim

n→∞

f(xn)− f(x0)

xn − x0
≤ 0,

which implies that f ′(x0) = 0, as desired.

The next step to the Mean Value Theorem is Rolle’s Theorem, attributed to French

mathematician Michel Rolle in 1691. Moving from Lemma 7.8, all we need to do is assume

that f is continuous on [a, b] to guarantee the existence of a point c such that f ′(c) = 0.

Theorem 7.9: Rolle’s Theorem

Suppose f : [a, b] → R is continuous on [a, b] and differentiable on (a, b). If f(a) =

f(b) = 0, then there exists a point c ∈ (a, b) such that f ′(c) = 0.

Proof. We first deal with the case when f(x) = 0 for all x ∈ [a, b]. It follows that f ′(x) = 0

for all x ∈ [a, b], so pick c = b+a
2 ∈ (a, b). It follows that f ′(c) = 0.

For the remainder of the proof, we assume that f is not identically 0. By the Extreme

Value Theorem, there exists xm, xM ∈ [a, b] such that f(xm) ≤ f(x) ≤ f(xM ) for all

x ∈ [a, b]. Since f is nonzero somewhere, one of xm, xM is a member of (a, b), which we will

call x0. This extremum is a global extremum and hence a local extremum. It follows that

f ′(x0) = 0 and our proof is complete.

The Mean Value Theorem, perhaps more famous, is nothing more than Rolle’s Theorem

with a linear translation. However, the Mean Value Theorem has a special geometric inter-
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pretation. For a function f continuous on [a, b] and differentiable on (a, b), there exists a

point c ∈ (a, b) such that the slope of the secant line connecting the endpoints equals the

slope, or derivative at c, f ′(c).

Figure 26: The geometry of the Mean Value Theorem

Theorem 7.10: The Mean Value Theorem

Suppose f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b). Then there

exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. In order to use Rolle’s Theorem, we need a continuous and differentiable function

such that g(a) = g(b) = 0. After some tinkering around with f we define g : [a, b]→ R by

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

By the algebra of continuous and differentiable functions, g is also continuous on [a, b] and

differentiable on (a, b). By construction,

g(a) = f(a)− f(a)− f(b)− f(a)

b− a
(a− a) = 0

and

g(b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a) = 0.

Therefore, by Rolle’s Theorem, there exists a c ∈ (a, b) such that g′(c) = 0. Computing the
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derivative of g in terms of f , we have that

g′(c) = f ′(c)− f(b)− f(a)

b− a
= 0, or rather, f ′(c) =

f(b)− f(a)

b− a
.

Another Mean Value Theorem, attributed to Augustin-Louis Cauchy, is similar to the Mean

Value Theorem, but adds another continuous, differentiable function into the mix:

Theorem 7.11: The Cauchy Mean Value Theorem

Suppose f, g : [a, b] → R are continuous on [a, b] and differentiable on (a, b). If

g′(x) 6= 0 for all x ∈ (a, b), then there exists a c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

Proof. As in the Mean Value Theorem, we define another function h : [a, b]→ R given by

h(x) = f(x)− f(b)− f(a)

g(b)− g(a)
g(x)

for all x ∈ [a, b]. How do we know that we can divide by g(b)−g(a)? Well, if g(b)−g(a) = 0

or rather g(a) = g(b), then by Rolle’s Theorem, there would exist a c ∈ (a, b) such that

g′(c) = 0, contradicting our hypothesis on g′(x). Thus, g(a) 6= g(b). We know that h is

continuous on [a, b] and differentiable on (a, b) by the algebra of continuous and differentiable

functions, with derivative

h′(x) = f ′(x)− f(b)− f(a)

g(b)− g(a)
g′(x)

for all x ∈ (a, b). We know note that

h(a) = f(a)− f(b)− f(a)

g(b)− g(a)
g(a) =

f(a)g(b)− f(b)g(a)

g(b)− g(a)

and

h(b) = f(b)− f(b)− f(a)

g(b)− g(a)
g(b) =

f(a)g(b)− f(b)g(a)

g(b)− g(a)

so that h(a) = h(b). By Rolle’s Theorem, there exists a c ∈ (a, b) such that h′(c) = 0, or

rather, that

f ′(c)− f(b)− f(a)

g(b)− g(a)
g′(c) = 0, or rather,

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.
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This quotient of function endpoints being equal to the quotient of function derivatives

is exactly what we need to prove l’Hôpital’s Rule, attributed to French mathematician

Guillaume de l’Hôpital and first introduced by Swiss mathematician Johann Bernoulli. It

is essential for evaluating limits of functions with ‘indeterminate forms’ such as 0
0 or ±∞±∞ .

Corollary 7.12: l’Hôpital’s Rule

Suppose f, g : [a, b] → R are continuous on [a, b] and differentiable on (a, b). For

c ∈ [a, b], if

1. g′(x) 6= 0 for all x ∈ (a, b),

2. f(c) = g(c) = 0, and

3. lim
x→c

f ′(x)
g′(x) exists,

then lim
x→c

f(x)
g(x) exists and

lim
x→c

f(x)

g(x)
= lim
x→c

f ′(x)

g′(x)

Proof. We begin this proof with a sequence (xn)n∈N of [a, b] such that xn 6= c for all n ∈ N
and lim

n→∞
xn = c. For every n ∈ N, by the Cauchy Mean Value Theorem, there exists a

cn between xn and c such that f(xn)−f(c)
g(xn)−g(c) = f ′(cn)

g′(cn)
. Actually, these cn may be chosen as

in Lemma 7.8. Since cn is between xn and c for all n ∈ N, the sequence (cn)n∈N satisfies

cn 6= c for all n ∈ N and lim
n→∞

cn = c as well. By our hypothesis, lim
n→∞

f ′(cn)
g′(cn)

exists

and thus lim
n→∞

f(xn)−f(c)
g(xn)−g(c) = lim

n→∞
f(xn)
g(xn)

= lim
n→∞

f ′(cn)
g′(cn)

. By Lemma 6.5, lim
x→c

f(x)
g(x) exists with

lim
x→c

f(x)
g(x) = lim

x→c
f ′(x)
g′(x) .

7.2 Exercises

1. Show that for a function f : (a, b)→ R, differentiable at c ∈ (a, b),

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
.

2. Show that any constant function f(x) = α, α ∈ R, is differentiable on R with f ′(x) = 0.

Also, show that the identity function g(x) = x is differentiable on R with g′(x) = 1.

3. a) Using the algebra of differentiable functions and induction, show that f(x) = xn

is differentiable on R for all n ∈ N and f ′(x) = nxn−1.

b) Prove the previous result for negative integers.
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4. a) Show that f(x) = sin(x) is differentiable on R and f ′(x) = cos(x).

b) Show that f(x) = cos(x) is differentiable on R with f ′(x) = − sin(x).

c) Prove differentiability (over their respective domains), and calculate derivatives

for the other four trigonometric functions: tan(x), csc(x), sec(x), and cot(x).

5. Consider the function f(x) = x2 sin( 1
x ) defined for all x 6= 0 with f(0) = 0. Show from

Definition 7.1 that f is differentiable at 0 but that f ′ is not continuous at 0. This is

a critical example of the fact that being differentiable at a point is much weaker than

being continuously differentiable, i.e. f ′ is continuous.

6. Suppose that f : [a, b] → R is continuous on [a, b] and differentiable on (a, b). Show

that

a) if |f ′(x)| ≤M for all x ∈ (a, b), then f is uniformly continuous on [a, b];

b) if f ′(x) 6= 0 for all x ∈ (a, b), then f is injective;

c) if f ′(x) ≥ 0 (resp. f ′(x) ≤ 0) for all x ∈ (a, b), then f is monotone increasing

(decreasing);

d) if f ′(x) = 0 for all x ∈ (a, b), then f is a constant function.

7. Suppose that f, g : [a, b] → R are continuous on [a, b], differentiable on (a, b), and

satisfy f ′(x) = g′(x) for all x ∈ (a, b). Show that f(x) = g(x) + C, for some C ∈ R.

8 Integration

Unlike the previous chapter on differentiation, this chapter on integration will feature much

more technical notation and many more definitions. Just to build up the theory of inte-

gration (Riemann or Darboux) requires substantial preparation. But, with figures along

the way, the material will be presented in an organized and productive manner. Before

discussing anything about functions, we define the notion of partitions of closed intervals

on the real line.
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Definition 8.1: Partitions

Let [a, b] be a closed, bounded interval of R.

1. A partition P of [a, b] is a finite set of points {x0, x1, . . . , xn} such that

a = x0 < x1 < · · · < xn = b.

2. A partition Q of [a, b] is said to be finer than a partition P of [a, b] if and only

if P ⊆ Q.

3. The mesh of a partition P = {x0, x1, . . . , xn} of [a, b] is defined by

‖P‖ := max
i∈{1,2,...,n}

{xi − xi−1}.

Figure 27: Partitions visually

All of the previous definitions only have to deal with the x-axis, the independent variable.

What we discuss next are functions. In calculus classes, the integral is usually described as

the ‘area under the curve’. Before defining the integral, we start with the rectangles that are

the building blocks for the definition. We give two definitions differing in how the heights

of the rectangles are chosen.

Definition 8.2: Riemann Sums

Let f : [a, b]→ R be a bounded function and let P = {x0, x1, . . . , xn} be a partition

of [a, b]. We define a Riemann sum of f and P as

S(P, f) =

n∑
i=1

f(ti)(xi − xi−1), where ti ∈ [xi−1, xi].
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Definition 8.3: Darboux Sums

Let f : [a, b]→ R be a bounded function and let P = {x0, x1, . . . , xn} be a partition

of [a, b]. We define the upper Darboux sum of f and P as

U(P, f) =

n∑
i=1

Mi(f)(xi − xi−1), where Mi(f) = sup{f(x) : x ∈ [xi−1, xi]}.

Analogously, we define the lower Darboux sum of f and P as

L(P, f) =

n∑
i=1

mi(f)(xi − xi−1), where mi(f) = inf{f(x) : x ∈ [xi−1, xi]}.

These three sums may seem quite different, but essentially, the only thing that differen-

tiates them is the ‘height’ chosen over each subinterval [xi−1, xi]. For Riemann sums, any

point in each subinterval can be chosen and plugged into the function to get the height. For

the upper and lower Darboux sums, the heights are fixed: you will either be using the supre-

mum or infimum, respectively, over each function range on the subinterval. Since we assume

our function f is bounded to begin with, f([xi−1, xi]) is bounded for each i = 1, 2, . . . , n

and thus the supremum and infimum over such a set exist.

Before Definitions 8.2 and 8.3 were presented, we discussed rectangles as motivation for

the approximation of an integral, which is exactly what is going on in each definition. The

‘base’ of each rectangle is the length of the subinterval [xi−1, xi] and the height depends on

the type of sum you are concerned with as described in the previous paragraph (see Figure

28). Thus, to get an approximation for the ‘area under the curve’, or the integral of f , you

take the finite sum of the area of each rectangle, base ∗ height.

We know prove a lemma about the relation between upper and lower Darboux sums for

partitions P and Q with P ⊆ Q. We also give an inequality relating Darboux sums and

Riemann sums of a given partition P

Lemma 8.4: Comparing Sums

Let f : [a, b]→ R be bounded and P and Q be partitions of [a, b] such that P ⊆ Q.

Then

1. L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f) and

2. L(P, f) ≤ S(P, f) ≤ U(P, f).

Proof.

70



(a) A Riemann sum

(b) An upper Darboux sum

(c) A lower Darboux sum

Figure 28: Some examples of rectangular sums for a given function and partition

1. If P = Q = {x0, x1, . . . , xn}, then the result follows almost immediately. We just need

to show that L(P, f) ≤ U(P, f). Since mi(f) ≤Mi(f) for all i ∈ {1, . . . , n},

L(P, f) =

n∑
i=1

mi(f)(xi − xi−1) ≤
n∑
i=1

Mi(f)(xi − xi−1) = U(P, f).

We now suppose that P ( Q. Since both P and Q are finite, Q can be written as P

with a finite number of extra points thrown in. We prove our result in the case that

Q only has one extra point c, say

P = {x0, x1, . . . , xn} and Q = {x0, c, x1, . . . , xn}.
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If Q has more than one extra point, we just repeat the process finitely many times.

Note that in the case of one extra point, the location of c does not matter; the

subinterval [xi−1, xi] that contains c is the only one affected in the summation. In

this proof, we say that c ∈ [x0, x1], the first subinterval. Outside of this subinterval,

the summation over P and Q agree.

Over the first subinterval, we have that since both [x0, c] and [c, x1] are subsets of

[x0, x1], the images of these sets under f satisfy f([x0, c]) ⊆ f([x0, x1]) and f([c, x1]) ⊆
f([x0, x1]). Thus, by Example 3.16,

inf(f([x0, x1])) ≤ inf(f([x0, c])) ≤ sup(f([x0, c])) ≤ sup(f([x0, x1])).

The same follows for f([c, x1]) in the middle two inequalities as well. For some ease of

notation we denote these infimum and supremum values by

a1 := inf(f([x0, x1])) a2 := inf(f([x0, c])) a3 := inf(f([c, x1]))

A1 := sup(f([x0, x1])) A2 := sup(f([x0, c])) A3 := sup(f([c, x1]))

(see Figure 29). The above chains of inequalities may thus be rewritten as

a1 ≤ a2 ≤ A2 ≤ A1 and a1 ≤ a3 ≤ A3 ≤ A1

(a) Lower Darboux sums (b) Upper Darboux sums

Figure 29: Darboux sums over the split subinterval [x0, x1]

Now, for P , the area of the lower and upper rectangles over the first interval [x0, x1]

are a1(x1 − x0) and A1(x1 − x0), respectively. For Q, the first subinterval is split in

two with lower area a2(c− x0) + a3(x1 − c) and upper area A2(c− x0) + A3(x1 − c).
The key here is the chain of supremum and infimum inequalities from above. We know

that

a2(c− x0) + a3(x1 − c) ≥ a1(c− x0) + a1(x1 − c) = a1(x1 − x0)
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and

A2(c− x0) +A3(x1 − c) ≤ A1(c− x0) +A1(x1 − c) = A1(x1 − x0).

Therefore, over [x0, x1], the lower area for P is less than or equal to the lower area for

Q; also, the upper area for P is greater than or equal to the upper area for Q. Given

that the other rectangles are equal over [x1, xn], it follows that

L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f).

2. We note that for the partition P = {x0, x1, . . . , xn}, mi(f) ≤ f(ti) ≤ Mi(f), for all

ti ∈ [xi−1, xi] and all i = 1, 2, . . . , n. Therefore,

n∑
i=1

mi(f)(xi − xi−1) ≤
n∑
i=1

f(ti)(xi − xi−1) ≤
n∑
i=1

Mi(f)(xi − xi−1),

or rather,

L(P, f) ≤ S(P, f) ≤ U(P, f).

From this lemma, we can make a general claim about lower and upper Darboux sums

over arbitrary partitions of [a, b].

Corollary 8.5: Lower and Upper Darboux Sums in general

Let f : [a, b] → R be bounded and P and Q be any two partitions of [a, b]. Then

L(P, f) ≤ U(Q, f).

Proof. For two arbitrary partitions P and Q of [a, b], P ∪ Q is a partition of [a, b] that is

finer than both P and Q. Thus, by the previous lemma,

L(P, f) ≤ L(P ∪Q, f) ≤ L(P ∪Q, f) ≤ U(Q, f)

and we have our desired result.

We now introduce some more machinery in the form of Riemann-integrable and Darboux-

integrable functions and the Riemann and Darboux integrals. Each of these definitions

include a ‘limiting process’ whether that be taking a supremum or taking a limit:
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Definition 8.6: Riemann-Integrability

Let f : [a, b]→ R be bounded. We say f is Riemann-integrable if and only if the

limit

lim
‖P‖→0

S(P, f)

exists. We say that f has Riemann integral equal to I ∈ R if and only if for all

ε > 0, there exists a δ > 0 such that for every partition P = {x0, x1, . . . , xn} of [a, b]

with ‖P‖ < δ and for any arbitrary choice of ti ∈ [xi−1, xi] (as per Definition 8.2),

|S(P, f)− I| < ε.

Definition 8.7: Darboux-Integrability

Let f : [a, b]→ R be bounded. We define the upper Darboux integral of f as

∫ b

a

f := inf{U(P, f) : P a partition of [a, b]}.

Similarly, we define the lower Darboux integral of f as∫ b

a

f = sup{L(P, f) : P a partition of [a, b]}.

Now, we say that f is Darboux-integrable if and only if
∫ b
a
f =

∫ b
a
f . In this case,

we define the Darboux integral of f to be this common value and denote it by∫ b
a
f .

These two definitions are clunky when it comes to showing a function is integrable. To

show f is Riemann-integrable, we already need to have a guess at the integral that the limit

in Definition 8.6 converges to. Also, dealing with this limit means defining sufficiently fine

partitions (as ‖P‖ approaches 0) to prove something with an arbitrary ε > 0. In short, there

are many quantifiers to deal with.

On the other hand, the Darboux definition tasks you with computing the infimum and

supremum over all partitions P of [a, b] (there are a lot to check...) and showing that these

two values are equal.

We note here that the supremum and infimum defining the lower and upper Darboux

integrals always exist. Let P be an arbitrary partition of [a, b], thus satisfying {a, b} ⊆ P .

Also, since f is bounded, there exists an M ≥ 0 such that |f(x)| ≤ M for all x ∈ [a, b].
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From Lemma 8.4, we have that

−M(b− a) ≤ L({a, b}, f) ≤ L(P, f) ≤ U(P, f) ≤ U({a, b}, f) ≤M(b− a).

Therefore, the sets {U(P, f) : P a partition of [a, b]} and {L(P, f) : P a partition of [a, b]}
are both bounded above and below (and nonempty) so that the supremum and infimum of

each of them exist.

We now argue that the Darboux definition is going to be much more beneficial and we

prove some results to help us eschew the Riemann definition altogether.

Lemma 8.8: Upper and Lower Darboux Integrals in general

Let f : [a, b]→ R be bounded. Then

∫ b

a

f ≤
∫ b

a

f.

Proof. Let P and Q be two arbitrary partitions of [a, b]. From Corollary 8.5, L(P, f) ≤
U(Q, f). Thus, since U(Q, f) does not depend on P , U(Q, f) is an upper bound for all

lower Darboux sums over [a, b]. Hence by the definition of supremum,∫ b

a

f ≤ U(Q, f).

Now,
∫ b
a
f is definitely not in terms of Q so that

∫ b
a
f is a lower bound for all upper Darboux

sums over [a, b]. Therefore, by the definition of infimum

∫ b

a

f ≤
∫ b

a

f,

as desired.

We now present an alternate characterization for proving Darboux-integrability. This

alternate characterization is an invaluable tool for proving functions are Darboux-integrable.

As will be seen, this definition only requires the existence of one partition P ; there is no

need to prove the equality suprema and infima or to check all partitions P with ‖P‖ < δ

for some δ > 0.
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Theorem 8.9: Alternate Darboux-Integrability Characterization

Let f : [a, b] → R be bounded. Then f is Darboux-integrable if and only if for all

ε > 0, there exists a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.

Proof. We start with the forward direction by supposing f is Darboux-integrable as in

Definition 8.7 and let ε > 0. By the definition of infimum, there exists a partition P1 of

[a, b] such that U(P1, f) <
∫ b
a
f + ε

2 . In addition, there exists a partition P2 of [a, b] such

that L(P2, f) >
∫ b
a
f − ε

2 , by the definition of supremum. Our partition for the proof of this

direction will be P := P1 ∪ P2 so that

L(P2, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P1, f).

Therefore, since
∫ b
a
f =

∫ b
a
f by hypothesis,

U(P, f)− L(P, f) ≤ U(P1, f)− L(P2, f)

<

∫ b

a

f + ε
2 −

∫ b

a

f + ε
2 = ε.

This is exactly the forward direction. For the converse direction, we show that
∫ b
a
f −∫ b

a
f < ε for all ε > 0, which would imply that

∫ b
a
f =

∫ b
a
f . Let ε > 0. By the hypothesis

of this direction there exists a partition P of [a, b] such that U(P, f) − L(P, f) < ε. By

Definition 8.7 and Lemma 8.8, we know that

L(P, f) ≤
∫ b

a

f ≤
∫ b

a

f ≤ U(P, f).

Therefore, we have that

∫ b

a

f −
∫ b

a

f ≤ U(P, f)− L(P, f) < ε.

The result follows for the converse direction and the equivalence is established.

With this handy alternate characterization for Darboux-integrability, we no longer need

to take suprema to show a function is Darboux-integrable. For an arbitrary ε > 0, we need

only find a partition such that the upper and lower Darboux sums with respect to that

partition are less than ε apart. Here is a visual interpretation of this theorem, showing the
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lower and upper Darboux sums as before, along with the purple difference, which is what

we are looking to be arbitrarily small:

(a) Upper Darboux sum of f(x) (b) Lower Darboux sum of f(x)

(c) A visualization of U(P, f)− L(P, f)

Figure 30: An alternate Darboux-integrability characterization

In order for f to be Darboux-integrable, for any given ε > 0, we must find a partition

P = {x0, . . . , xn} such that the purple area above is less than ε. We give an example to

show a function is Darboux-integrable using this alternate characterization:

Example 8.10: A Darboux-integrable Function

We define f : [0, 1]→ R by

f(x) =

{
1 x ∈ [0, 1)

0 x = 1
.

Show that f is Darboux-integrable and that
∫ b
a
f = 1.

Proof. Let ε > 0. We need to find a partition P of [0, 1] such that U(P, f) − L(P, f) < ε.

The trick with these discontinuous functions is to partition the interval [0, 1] in such a way

so that the discontinuous point is contained in an arbitrarily small subinterval. For example,

we will prove Darboux-integrability with the partition P = {0, 1 − ε
2 , 1}. Over [0, 1 − ε

2 ,

the supremum and infimum are both 1. Over [1− ε
2 , 1], though, the supremum is 1 and the

infimum is 0. Now, we compute:

U(P, f) = 1 · (1− ε
2 − 0) + 1 · (1− (1− ε

e )) = 1
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and

L(P, f) = 1 · (1− ε
2 − 0) + 0 · (1− (1− ε

e )) = 1− ε
2

so that

U(P, f)− L(P, f) = 1− (1− ε
2 ) = ε

2 < ε.

(a) Upper Darboux sum of f(x) (b) Lower Darboux sum of f(x)

(c) Calculating U(P, f)− L(P, f)

Figure 31: Darboux sums of f(x)

It follows that f is Darboux-integrable. Now, to compute the integral, we note that

1− ε
2 = L(P, f) ≤

∫ b

a

f ≤ U(P, f) = 1,

as in the proof of Theorem 8.9. Thus, −ε < − ε
2 ≤

∫ b
a
f−1 ≤ 0 < ε. Therefore,

∣∣∣∫ ba f − 1
∣∣∣ < ε.
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Since ε > 0 was arbitrary to begin with, it follows that
∫ b
a
f = 1, as we wanted to show.

The major result of this subsection is showing that being Darboux-integrable is equiva-

lent to being Riemann-integrable. In addition, when a function is integrable, the Riemann

and Darboux integrals coincide.

Theorem 8.11: Darboux-integrable if and only if Riemann-integrable

A bounded function f : [a, b]→ R is Darboux-integrable if and only if it is Riemann-

integrable. In this case, the Riemann and Darboux integrals as defined in Definitions

8.6 and 8.7, respectively, are equal.

Proof. In lieu of a rigorous proof that may go beyond the necessities of this course, we give

a sketch of the argument for both directions.

For the forward direction, suppose that f is Darboux-integrable. For any partition P of

[a, b], we know that

L(P, f) ≤ S(P, f) ≤ U(P, f)

from Lemma 8.4. Thus, the Riemann sum is always sandwiched between the lower and upper

Darboux sums. Taking the limit as ‖P‖ → 0 tells us that lim
‖P‖→0

S(P, f) is sandwiched

between lim
‖P‖→0

L(P, f) and lim
‖P‖→0

U(P, f). It can be shown (although the proof is a bit

technical) that

lim
‖P‖→0

L(P, f) =

∫ b

a

f and lim
‖P‖→0

U(P, f) =

∫ b

a

f.

Therefore, by the same notion as the Squeeze Theorem, lim
‖P‖→0

S(P, f) exists and must be

equal to the common value
∫ b
a
f =

∫ b
a
f =

∫ b
a
f (since f is Darboux-integrable).

For the converse direction, suppose f is Riemann integrable and let ε > 0. There exists a

partition P = {x0, x1, . . . , xn} of [a, b] and two choices of t1i , t
2
i ∈ [xi−1, xi] (call these tagged

partitions of [a, b] P1 and P2, respectively) such that

1. U(P, f) < S(P1, f) + ε
6 ,

2. L(P, f) > S(P2, f) + ε
6 , and

3. |S(P1, f)− S(P2, f)| < 2ε
3 (we get this since f is Riemann-integrable).

Therefore,

U(P, f)− L(P, f) < S(P1, f)− S(P2, f) + ε
3

≤ |S(P1, f)− S(P2, f)|+ ε
3

< 2ε
3 + ε

3 = ε.

79



By Theorem 8.9, f is Darboux-integrable. Now, f is Darboux-integrable if and only if it is

Riemann-integrable. Thus, the Riemann integral is always seen as the common value of the

upper and lower Darboux integrals as shown above.

After this proof, we will only say that a function f : [a, b] → R is integrable or that

f ∈ R([a, b]). The integral of f will be denoted by D(f) = R(f) =
∫ b
a
f . For all intents and

purposes, we will continue to use proof techniques related to Darboux-integrability given

the utility of Theorem 8.9.

8.1 Classes of Integrable Functions

Now that we have rigorously defined the integral of f , we need to start building our catalog

of functions that are integral. We start by proving that we can construct integrable functions

from functions that we know to be integrable.

Theorem 8.12: Constructing Integrable Functions

Suppose that f, g ∈ R([a, b]) and c ∈ R. Then

a) cf ∈ R([a, b]) with
∫ b
a
cf = c

∫ b
a
f , and

b) f + g ∈ R([a, b]) with
∫ b
a

(f + g) =
∫ b
a
f +

∫ b
a
g.

Proof.

a) We let ε > 0 to make use of Theorem 8.9. If c = 0, then cf is the constant zero function.

By a problem in the Exercises,
∫ b
a
cf =

∫ b
a

0 = 0 = c
∫ b
a
f , as desired. Suppose that

c > 0. Since f ∈ R([a, b]) there exists a partition P of [a, b] such that U(P, f) −
L(P, f) < ε

c . We note that for the function cf and partition P = {x0, x1, . . . , xn},
mi(cf) = sup{cf(x) : x ∈ [xi−1, xi]} = c sup{f(x) : x ∈ [xi−1, xi]} = cmi(f). The

same holds for the Mi(cf). Therefore,

U(P, cf)− L(P, cf) =

n∑
i=1

(Mi(cf)−mi(cf))(xi − xi−1)

= c

n∑
i=1

(Mi(f)−mi(f))(xi − xi−1)

= c(U(P, f)− L(P, f)) < ε.
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To show equality of the integrals, we notice that∫ b

a

cf = sup{L(P, cf) : P a partition of [a, b]}

= sup{cL(P, f) : P a partition of [a, b]}

= c sup{L(P, f) : P a partition of [a, b]}

= c

∫ b

a

f.

We give a summary for the analogous proof of c < 0. For any ε > 0, we get a

partition P of [a, b] such that U(P, f)−L(P, f) < ε
−c . The trick here is that for every

subinterval of P , mi(cf) = cMi(f) and Mi(cf) = cmi(f) since c < 0. We can then

compute U(P, cf) − L(P, cf) = −c(U(P, f) − L(P, f)) < ε. The integral calculation

will also go through two sign flips since c is negative. Ultimately, the end result is not

affected: ∫ b

a

cf = sup{L(P, cf)} = sup{cU(P, f)} = c inf{U(P, f)} = c

∫ b

a

f.

b) We again let ε > 0. Since f and g are integrable, there exists partitions Pf and Pg of

[a, b] such that

U(Pf , f)− L(Pf , f) < ε
2 and U(Pg, g)− L(Pg, g) < ε

2 .

We define the partition P = Pf ∪ Pg = {x0, x1 . . . , xn}, which also satisfies both of

the above inequalities as a common refinement of Pf and Pg. Over every subinterval

[xi−1, xi] of P , we know that

Mi(f + g) ≤Mi(f) +Mi(g) and mi(f + g) ≥ mi(f) +mi(g).

Therefore,

U(P, f + g)− L(P, f + g) =

n∑
i=1

(Mi(f + g)−mi(f + g))(xi − xi−1)

≤
n∑
i=1

(Mi(f)−mi(f) +Mi(g)−mi(g))(xi − xi−1)

= U(P, f)− L(P, f) + U(P, g)− L(P, g)

< ε
2 + ε

2 = ε.

It follows that f + g is Darboux integrable. Let P be any partition of [a, b]. We compute
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the Darboux integral in two ways. First,∫ b

a

(f + g) ≤ U(P, f + g) ≤ U(P, f) + U(P, g),

which implies that for the infimum over all partitions P of [a, b]∫ b

a

(f + g) ≤ inf{U(P, f) + U(P, g)} = inf{U(P, f)}+ inf{U(P, g)} =

∫ b

a

f +

∫ b

a

g.

Similarly, ∫ b

a

(f + g) ≥ L(P, f + g) ≥ L(P, f) + L(P, g),

which implies that for the supremum over all partitions P of [a, b]∫ b

a

(f + g) ≥ sup{L(P, f) + L(P, g)} = sup{L(P, f)}+ sup{L(P, g)} =

∫ b

a

f +

∫ b

a

g.

It follows that with both inequalities satisfied,∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g,

as desired.

Sadly, there is no general formula for the integral of a product of integrable functions

like there is for sums or scalar multiples of integrable functions. However, it can be proven

that if f, g ∈ R([a, b]), then fg ∈ R([a, b]) as well: check the Exercises.

We now prove some order properties of the integral. If we know one integrable functions

is greater than another of their domain, we argue that their integrals respect that order.

Furthermore, we gain a result about the absolute value of an integrable function and the

comparison between the resultant integrals.

Theorem 8.13: Order Properties of the Integral

Suppose f, g ∈ R([a, b]) with f(x) ≤ g(x) for all x ∈ [a, b]. Then

a)
∫ b
a
f ≤

∫ b
a
g, and

b) |f | ∈ R([a, b]) with
∣∣∣∫ ba f ∣∣∣ ≤ ∫ ba |f |.

Proof.

a) Let P = {x0, x1, . . . , xn} be any partition of [a, b]. Since f(x) ≤ g(x) for all x ∈ [a, b],

mi(f) ≤ mi(g) and Mi(f) ≤ Mi(g). These follow since for all x ∈ [xi−1, xi], mi(f) ≤
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f(x) ≤ g(x) and f(x) ≤ g(x) ≤Mi(g). Therefore,

L(P, f) =

N∑
i

mi(f)(xi − xi−1) ≤
N∑
i

mi(g)(xi − xi−1) = L(P, g).

The same holds for U(P, f) and U(P, g). Now, we see that∫ b

a

f = sup{L(P, f) : P a partition of [a, b]}

≤ sup{L(P, g) : P a partition of [a, b]}

=

∫ b

a

g.

b) To show |f | ∈ R([a, b]), let ε > 0. There exists a partition P = {x0, x1, . . . , xn} of [a, b]

such that U(P, f)− L(P, f) < ε. We prove that Mi(f)−mi(f) = sup{|f(x)− f(y)| :
x, y ∈ [xi−1, xi]}. Since f is bounded, this supremum exists. We have that

Mi(f)−mi(f) = sup{f(x) : x ∈ [xi−1, xi]} − inf{f(y) : y ∈ [xi−1, xi]}

= sup{f(x) : x ∈ [xi−1, xi]}+ sup{−f(y) : y ∈ [xi−1, xi]}

= sup{f(x)− f(y) : x, y ∈ [xi−1, xi]}

≤ sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]}.

For the other inequality, we notice that for any x, y ∈ [xi−1, xi],

f(x)− f(y) ≤Mi(f)−mi(f) and f(y)− f(x) ≤Mi(f)−mi(f)

by symmetry so that |f(x)− f(y)| ≤Mi(f)−mi(f). Thus,

sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]} ≤Mi(f)−mi(f)

and equality holds. Therefore,

Mi(|f |)−mi(|f |) = sup{||f(x)| − |f(y)|| : x, y ∈ [xi−1, xi]}

≤ sup{|f(x)− f(y)| : x, y ∈ [xi−1, xi]}

= Mi(f)−mi(f)
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by the Reverse Triangle Inequality. Finally,

U(P, |f |)− L(P, |f |) =

n∑
i=1

(Mi(|f |)−mi(|f |))(xi − xi−1)

≤
n∑
i=1

(Mi(f)−mi(f))(xi − xi−1)

= U(P, f)− L(P, f) < ε,

so that |f | ∈ R([a, b]).

The trick to compare the integrals is to notice that − |f(x)| ≤ f(x) ≤ |f(x)| for all

x ∈ [a, b]. Thus, from the result above,

−
∫ b

a

|f | =
∫ b

a

(− |f |) ≤
∫ b

a

f ≤
∫ b

a

|f | .

It follows that
∣∣∣∫ ba f ∣∣∣ ≤ ∫ ba |f |.

To conclude this chapter, we prove that two types of functions will always be integrable.

Continuous functions being integrable seems straightforward; the ‘area under the curve’ of

a continuous function seems to be well defined since there are no ‘jumps’ in such a function.

On the other hand, monotone (increasing or decreasing) does not make much sense at first.

Just being monotone is not much of a restriction. However, both continuous functions and

monotone functions will always be integrable.

Theorem 8.14: Monotone Implies Integrable

Suppose f : [a, b]→ R is monotone on [a, b]. Then f ∈ R([a.b]).

Proof. We consider the case when f is monotone increasing, i.e. x ≤ y implies f(x) ≤ f(y).

We know that f is bounded since f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b]. Let ε > 0. If

f(a) = f(b), then f is constant and thus integrable. So suppose f(a) < f(b). There exists

an N ∈ N such that 1
N < ε

(b−a)(f(b)−f(a)) and consider the partition P = {x0, x1, . . . , xN}
of [a, b] given by

xi = a+ i
b− a
N

, for i = 0, 1, . . . , N.

Then ‖P‖ = b−a
N < ε

f(b)−f(a) . We now discuss mi(f) and Mi(f). Since f is increasing on

[a, b], we know that for every subinterval [xi−1, xi], Mi(f) = f(xi) and mi(f) = f(xi−1).

This follows because f(xi) is an upper bound for f(x) on [xi−1, xi] and is also an element
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of the set {f(x) : x ∈ [xi−1, xi]}. Thus, f(xi) is the maximum of the set and thus the

supremum of the set. The same can be said for f(xi−1) as the minimum and infimum. We

now compute:

U(P, f)− L(P, f) =

N∑
i=1

(Mi(f)−mi(f)) ‖P‖

=

N∑
i=1

(f(xi)− f(xi−1)) ‖P‖

= (f(b)− f(a)) ‖P‖ < ε.

Therefore, f is integrable. The case when f is monotone decreasing is analogous, but with

a negative sign thrown in.

Theorem 8.15: Continuous Implies Integrable

Suppose f : [a, b]→ R is continuous on [a, b]. Then f ∈ R([a.b]).

Proof. We know many things about a continuous function f on a closed, bounded interval,

as seen in Chapter 6. For starters, from the Extreme Value Theorem, there exists xm, xM ∈
[a, b] such that f(xm) ≤ f(x) ≤ f(xM ), so that f is bounded.

Let ε > 0. Since f is continuous on [a, b], it is uniformly continuous, by Theorem

6.17. Thus, there exists a δ > 0 such that |f(x)− f(y)| < ε
b−a whenever |x− y| < δ. Let

P = {x0, x1, . . . , xn} be a partition of [a, b] such that ‖P‖ < δ. This partition P can be

constructed as in the proof of the previous theorem, with subintervals of equal length δ
2 .

For every subinterval [xi−1, xi] of P , we know that since f is continuous, there exists

x′i, y
′
i ∈ [xi−1, xi] such that f(x′i) = Mi(f) and f(y′i) = mi(f). This also follows by the

Extreme Value Theorem. Note that since x′i, y
′
i ∈ [xi−1, xi], it follows that |x′i − y′i| ≤ xi −

xi−1 ≤ ‖P‖ < δ. By our uniformly continuous condition, |f(x′i)− f(y′i)| = f(x′i)− f(y′i) <
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ε
b−a . We now compute:

U(P, f)− L(P, f) =

n∑
i=1

(Mi(f)−mi(f))(xi − xi−1)

=

n∑
i=1

(f(x′i)− f(y′i))(xi − xi−1)

<

n∑
i=1

ε

b− a
(xi − xi−1)

=
ε

b− a

n∑
i=1

(xi − xi−1)

=
ε

b− a
· (b− a) = ε.

Therefore, f is integrable.

8.2 Exercises

1. Show that the function f : [0, 2]→ R given by

f(x) =


1 x ∈ [0, 1)

0 x = 1

1 x ∈ (1, 2]

is Darboux-integrable and that
∫ b
a
f = 2.

2. Show that the function g : [0, 1]→ R given by

g(x) =


0 x = 0

1 x ∈ (0, 1)

0 x = 1

is Darboux-integrable and that
∫ b
a
f = 1.

3. Prove that the function f(x) : [0, 1]→ R given by

f(x) =

{
1 x ∈ Q
0 x 6∈ Q

is not Darboux-integrable.

4. Let f : [a, b]→ R be bounded and let c ∈ R. Show that for any partition P of [a, b],

a) U(P, f + c) = U(P, f) + U(P, c),
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b) L(P, f + c) = L(P, f) + L(P, c), and

c) U(P, c) = L(P, c) = c(b− a).

5. Let f : [a, b]→ R be given bu f(x) = c for all x ∈ [a, b]. Show that f is both Riemann

and Darboux-integrable and that

lim
‖P‖→0

S(P, c) =

∫ b

a

c =

∫ b

a

c =

∫ b

a

c = c(b− a).

6. For a bounded function f : [a, b]→ R and any c ∈ R, show that

∫ b

a

(f + c) =

∫ b

a

f + c(b− a) and

∫ b

a

(f + c) =

∫ b

a

f + c(b− a).

7. The aim of this exercise is to prove that the product of integrable functions is inte-

grable.

a) Show that if f : [a, b]→ R is integrable, then f2 is integrable.

b) Suppose that both f, g : [a, b]→ R are integrable. Then fg is integrable.

8. Let f : [a, b] → R be bounded and c ∈ (a, b). Show that f ∈ R([a, b]) if and only if

f ∈ R([a, c]) and f ∈ R([c, b]), with∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

9. Suppose that f ∈ R([a, b]) and that f = g except at the finite number of points

{x1, x2, . . . , xm} ⊆ [a, b]. Show that g ∈ R([a, b]) and that
∫ b
a
f =

∫ b
a
g.

10. Suppose f : [a, b]→ R is continuous on [a, b]. Show there exists a c ∈ (a, b) such that

f(c) =
1

b− a

∫ b

a

f.

9 The Fundamental Theorem of Calculus

For the culminating section of this supplement, and for the culminating topic of a course

like MAT 370, we will examine the relationship between differentiation and integration.

Although the past two chapters have seemed relatively separated and don’t appear to be

connected, their connection is one of the most profound and famous results of differential

and integral calculus.
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We give a bit of history on the development of the discovery and proof of the Fundamental

Theorem of Calculus. Of course, some of the big names in its discovery were English

mathematician Isaac Newton and German mathematician Gottfried Leibniz, two leaders in

the development of calculus.

Sir Isaac Newton Gottfried Leibniz

However, there are other names to be mentioned in relation to this result at the heart

of calculus. Scottish mathematician James Gregory is claimed to have published the first

statement and proof of the Fundamental Theorem of Calculus in the 17th century. Also,

English mathematician Isaac Barrow, a mentor of Isaac Newton, has stakes in the discovery

of the theorem as well, although Newton developed much of the theory of calculus itself.

James Gregory Isaac Barrow

With all of the tools we have developed throughout this supplement and especially in the

preceding two chapters, we can now present and prove the statement of the Fundamental
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Theorem of Calculus. However, before going into the Fundamental Theorem itself, we make

a quick detour to talk about accumulation functions.

Consider a bounded function f : [a.b]→ R such that f ∈ R([a, b]). Then, we may define

a new function F : [a, b]→ R given by

F (x) =

∫ x

a

f =

∫ x

a

f(t) dt.

This function F scans from a to x and returns the area under the curve of f over the interval

[a, x]. Thus, F (a) = 0, for example, since no area is under f considering the interval [a, a].

As x goes from a to b, F accumulates the area under f . In some case, we will use the ‘dummy

variable’ t to distinguish between the independent variable of F and the integration variable

t. We illustrate this with a geometric example:

Example 9.1: A Geometric Accumulation Function

Let f : [0, 2]→ R be given by f(x) =

{
0 0 ≤ x < 1

1 1 ≤ x ≤ 2
. Confirm f is integrable and

compute F (x) =
∫ x
0
f .

Proof. That f is integrable follows from Theorem 8.14 and the fact that f is monotone

(increasing). Thus, F (x) =
∫ x
0
f is well defined on [0, 2]. We compute F considering the

geometry of the problem and finding the area under the curve.

Suppose 0 ≤ x < 1. Then the area under the curve of f is F (x) = 0. At x = 1.

F (1) =
∫ 1

0
f = 0 as well given that on this interval f = 0 at all but one point. By Exercise

9 from the previous chapter, the integral F (1) =
∫ 1

0
f equals 0. Now, suppose 1 < x ≤ 2.

The area under the graph of f is a rectangle of height 1 and base x − 1. Thus, the area

under the curve for such x values is F (x) = 1 · (x− 1) = x− 1. We may now say that

F (x) =

∫ x

0

f =

{
0 0 ≤ x ≤ 1

x− 1 1 < x ≤ 2
.

The power of this example may not be apparent at the moment, but after looking at

the graphs of these two functions f and F , we may see what integration does to integrable

functions:

Essentially, integrating from f(x) to F (x) took a discontinuous function and made it a

continuous one. This is a nice result for this example but in fact, it holds true for every

integrable function:
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Figure 34: Before and after integration

Theorem 9.2: Accumulation Functions are Continuous

Let f : [a, b] → R be bounded and suppose that f is integrable. Then, for the

function F : [a, b]→ R given by

F (x) =

∫ x

a

f,

F is continuous on [a, b].

Proof. We prove continuity using Definition 6.1. Let ε > 0. Since f is bounded, there exists

an M ≥ 0 such that |f(x)| ≤ M for all x ∈ [a, b]. If M = 0, then f is 0 everywhere and

hence F is 0 everywhere, and thus continuous. We suppose for the rest of the proof that

M > 0. At x0 = a, F (a) = 0. In this case, we set δ = ε
M and let x ∈ [a, b] such that

|x− a| < δ. We have that

|F (x)− F (a)| =
∣∣∣∣∫ x

a

f

∣∣∣∣
≤
∫ x

a

|f | , (Theorem 8.13)

≤
∫ x

a

M = M(x− a) < Mδ = ε.

Thus, F is continuous at a. Now, we let x0 ∈ (a, b]. Again, we pick δ = ε
M and let x ∈ [a, b]

such that |x− x0| < δ. Whether x < x0 or x > x0 does not matter since
∫ x0

x
f = −

∫ x
x0
f

from Exercise 8 in the previous chapter. Thus, these two integrals will have the same
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absolute value. Without loss of generality, we suppose that x > x0. It follows that

|F (x)− F (x0)| =
∣∣∣∣∫ x

a

f −
∫ x0

a

f

∣∣∣∣
=

∣∣∣∣∫ x

x0

f

∣∣∣∣ (Exercise 8, Chapter 8)

≤
∫ x

x0

|f | ≤
∫ x

x0

M = M(x− x0) < Mδ = ε.

Therefore F is continuous on (a, b] and hence continuous on all of [a, b].

Now that we are more familiar with these types of accumulation functions and what

they do, we ask ourselves: what if we integrate a function with a condition stronger than

integrability? What happens if we require our function f to be continuous, not just inte-

grable? This is exactly what the first part of the Fundamental Theorem of Calculus tells

us:

Theorem 9.3: Fundamental Theorem of Calculus, part one

Suppose f : [a, b]→ R is continuous. With the function F : [a, b]→ R given by

F (x) =

∫ x

a

f,

we have that F is differentiable on [a, b] and F ′ = f .

Proof. We prove this theorem using Definitions 7.1 and 6.4. Let ε > 0. We need to use

the fact that f is continuous on [a, b] and thus uniformly continuous on [a, b] (Theorem

6.17). Thus, by Definition 6.14 there exists a δ > 0 such that |f(x)− f(y)| < ε
2 whenever

x, y ∈ [a, b] with |x− y| < δ.

Now, we let x0 ∈ [a, b] to prove differentiability. Further, we let x ∈ [a, b] such that

0 < |x− x0| < δ. We note here that for any t between x and x0, it follows that |t− x0| < δ

as well. Thus, |f(t)− f(x0)| < ε
2 by uniform continuity. We now compute, with the help of
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the dummy variable t:∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ =

∣∣∣∣∣
∫ x
a
f(t) dt−

∫ x0

a
f(t) dt

x− x0
− f(x0)(x− x0)

x− x0

∣∣∣∣∣
=

∣∣∣∣∣
∫ x
x0
f(t) dt

x− x0
−
∫ x
x0
f(x0) dt

x− x0

∣∣∣∣∣
=

∣∣∣∫ xx0
(f(t)− f(x0)) dt

∣∣∣
|x− x0|

≤

∣∣∣∫ xx0
|f(t)− f(x0)| dt

∣∣∣
|x− x0|

(t is between x and x0 here)

≤

∣∣∣∫ xx0

ε
2 dt
∣∣∣

|x− x0|
=

ε
2 |x− x0|
|x− x0|

=
ε

2
< ε.

Therefore, F is differentiable on [a, b] and from Definition 6.4, we know that the limit F ′(x0)

is f(x0) for all x0 ∈ [a, b], i.e. F ′ = f .

So, when we require our function f to be continuous, we not only get that the integral

accumulation function is continuous, but also that it is differentiable. Further, taking the

derivative of F gives us back f . In other symbolic notation, with t as a ‘dummy variable’,

this part of the Fundamental Theorem tells us that

d

dx

(∫ x

a

f(t) dt

)
= f(x).

the rate of change of the area accumulated under the curve at a point x is equal to the

function at x itself. In a way, differentiation and integration are inverses operations; they

cancel each other out in this order (taking the derivative of an integral).

For the other part of the Fundamental Theorem, or rather the other direction, suppose

we are given an antiderivative of f , a differentiable function F such that F ′ = f . What can

we say about integrating this derivative F ′? This is what the second part of the Fundamental

Theorem has to say:

Theorem 9.4: Fundamental Theorem of Calculus, part two

Let f : [a, b]→ R be a continuous function and suppose that F : [a, b]→ R satisfies

F ′ = f . Then, ∫ b

a

f = F (b)− F (a).

Proof. For this proof, we actually rely on the proof of part one of the Fundamental Theorem
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of Calculus. We define the function G : [a, b]→ R by

G(x) =

∫ x

a

f.

By Theorem 9.3, we know that G′ = f so that G is an antiderivative of f as well. Thus,

G′ = F ′ and by Exercise 7 in Chapter 7, we know that G(x) = F (x) + C for some C ∈ R.

To find this C, we note that G(a) = 0. Thus, 0 = F (a) +C, or rather, C = −F (a). Finally,

plugging b into G, we get that

G(b) =

∫ b

a

f = F (b)− F (a),

as desired.

The strength of this part of the Fundamental Theorem is that it allows us to compute

the integral of f if we can find any antiderivative F of f . We simply plug in the endpoints

to F and subtract! In addition, to echo what we said after the proof of the first part, this

second part tells us, in different symbolic notation, that∫ x

a

f ′(t) dt = f(x)− f(a).

Integrating the rate of change function returns the original function itself, up to some

constant f(a).

9.1 Integration Techniques

Now that we have the Fundamental Theorem of Calculus at our disposal, we prove some of

the classic techniques to compute integrals: u-substitution and integration by parts. The

first technique, known as u-substitution or perhaps change of variables, allows us to integrate

certain compositions of functions with ease. If our function is of the form f(g(x)) · g′(x),

i.e. a function g is composed inside f and the derivative of g is multiplied, we may compute

the integral in a different, simpler way:

Theorem 9.5: u-substitution for Integration

Suppose ϕ : [a, b]→ I, I ⊆ R an interval, is a differentiable function with continuous

derivative ϕ′ and f : I → R is continuous. Then∫ b

a

(f ◦ ϕ) · ϕ′ =

∫ ϕ(b)

ϕ(a)

f.
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Proof. We first confirm that both of these integrals exist. Since f is continuous,
∫ ϕ(b)
ϕ(a)

f

makes sense. On the other hand, since both ϕ and ϕ′ are continuous, (f ◦ϕ)·ϕ′ is continuous;

the integral
∫ b
a

(f ◦ϕ) ·ϕ′ makes sense as well. We need to show that these two integrals are

equal.

We know by Theorem 9.3 that since f is continuous, an antiderivative of f exists: namely,

F (x) =
∫ x
a
f with F ′ = f . We consider the function F ◦ ϕ, which is differentiable as well,

by Theorem 7.6. Applying the formula for the chain rule, we have that

(F ◦ ϕ)′ = (F ′ ◦ ϕ) · ϕ′ = (f ◦ ϕ) · ϕ′.

Therefore, by Theorem 9.4 now,∫ b

a

(f ◦ ϕ) · ϕ′ =

∫ b

a

(F ◦ ϕ)′

= F (ϕ(b))− F (ϕ(a))

=

∫ ϕ(b)

a

f −
∫ ϕ(a)

a

f

=

∫ ϕ(b)

ϕ(a)

f,

exactly the equality we desired.

This proof took advantage of both parts of the Fundamental Theorem of Calculus, in-

tegrating a derivative and taking the derivative of an integral. In the proof, ϕ was our

differentiable function composed inside f . In many calculus classes, this function ϕ is usu-

ally written instead as u, where u is some differentiable function of x. Hence, this technique

usually goes by the name u-substitution.

For the other famous technique, however, we will only need the second part. If we are

given an integrand of the form f(x)g′(x), where f and g are differentiable functions, then

we may compute
∫ b
a
fg′ in terms of

∫ b
a
f ′g. This is integration by parts:

Theorem 9.6: Integration by Parts

Suppose f, g : [a, b]→ R are two differentiable functions with continuous derivatives

f ′ and g′. Then∫ b

a

fg′ = fg|ba −
∫ b

a

f ′g, where fg|ba = f(b)g(b)− f(a)g(a).

Proof. Again, both of the integrals exist since f , g, f ′, and g′ are all continuous. For

the proof of Theorem 9.5 we took advantage of the Chain Rule for derivatives. For this

94



proof, since there are products with no compositions of functions, we will be first using the

Product Rule for derivatives, Theorem 7.5. We know that (fg)′ = fg′+ fg′, or rather, that

fg′ = (fg)′ − f ′g. Integrating both sides, we have that by Theorem 9.4,∫ b

a

fg′ =

∫ b

a

((fg)′ − f ′g)

=

∫ b

a

(fg)′ −
∫ b

a

f ′g

= f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g

= fg|ba −
∫ b

a

f ′g,

as desired.

These will be the last results of this supplement, and hopefully some helpful proofs of

content seen and used in Calculus II. From the building blocks of the field of real numbers

R, we were able to build up the foundations to rigorously discuss sequences, continuous

functions, differentiation, and integration. I hope that this text has not only helped elucidate

why the results from Calculus classes are mathematically sound, but made MAT 370 go by

a bit more easily!

9.2 Exercises

1. For the following functions f : [a, b] → R, geometrically compute the accumulation

functions F (x) =
∫ x
a
f :

a) f : [0, 3]→ R, f =


0 0 ≤ x < 1

1 1 ≤ x ≤ 2

0 2 < x ≤ 3

,

b) f : [0, 2]→ R, f =

{
x 0 ≤ x < 1

0 1 ≤ x ≤ 2
,

c) f : [0, 2]→ R, f =

{
x 0 ≤ x < 1

2− x 1 ≤ x ≤ 2
,

d) f : [0, 2]→ R, f =

{
x 0 ≤ x < 1

x− 2 1 ≤ x ≤ 2
,

e) f : [0, 3]→ R, f =


x 0 ≤ x < 1

1 1 ≤ x ≤ 2

3− x 2 < x ≤ 3

.
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2. Use the Fundamental Theorem of Calculus, part one to show that for a continuous

function f : [a, b]→ R and a < c < b,∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

3. Suppose we restrict the absolute value function to the domain |·| : [−1, 1] → R. The

absolute value is not differentiable at 0, but it is continuous everywhere on [−1, 1].

Using the Fundamental Theorem of Calculus, part one, compute an antiderivative

F (x) of |x|, i.e. a function such that F ′(x) = |x| for all x ∈ [−1, 1].

4. Use the Fundamental Theorem of Calculus, part one to compute the following deriva-

tives:

a) d
dx

∫ 2x

a
et

2

dt,

b) d
dx

∫ b
−3x2 sin2(t) dt,

c) d
dx

∫ cos x

a
ln(t3) dt,

d) d
dx

∫ ex
−ex cos t dt.

5. Use u-substitution to compute

∫ √π/2
0

x cos(x2) dx.

6. Use u-substitution to compute ∫ 3π/4

π/4

cscx dx.

7. Compute
∫ e
1

lnx dx using integration by parts.

8. Compute
∫ 1

0
ex sin(x) dx using integration by parts.

Appendices

A Hints to Exercises

A.1 Chapter 3: The Real Number System

1. For 0 < x < y, prove by induction. For x < y < 0, consider the behavior of xn for

x < 0 at even and odd values of n.
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2. Work through the cases when a
b = 0, a

b > 0, and a
b < 0. For example, if a

b > 0, then

a and b have the same sign.

3. How does the average of two distinct real numbers x and y compare to x and y? Can

this process of taking an average be repeated?

4. For x not an upper bound of E, there exists y ∈ E such that y > x, by negating

Definition 3.6. If y turns out to be an upper bound of E, can we define another

element greater than x that is not?

5. Since U is nonempty and L is bounded above by every element of U , we may use the

Completeness Axiom: we know that x = sup(L) exists. Prove that l ≤ x ≤ u for all

l ∈ L and u ∈ U using Definition 3.9. Could the same result be proved using Theorem

3.15?

6. Show that sup(A) + sup(B) is an upper bound of A+B. Since sup(A+B) is the least

upper bound, sup(A+B) ≤ sup(A) + sup(B). For the other inequality, we know that

for any a ∈ A and b ∈ B, a+ b ≤ sup(A+B). Solve this inequality for a. This gives a

new upper bound for A. How does sup(A) compare to this new upper bound? Solve

for b in the resulting inequality to include sup(B).

7. That sup(AB) ≤ sup(A) sup(B) is the same argument as in the previous hint. For

the other inequality, we know that ab ≤ sup(AB) for all a ∈ A and b ∈ B. Solving for

a here gives a new upper bound of A with sup(A) ≤ 1
b sup(AB) for all b ∈ B. Solve

for b here to get a new inequality with sup(B). Why can we divide and multiply by

sup(A) and sup(B)?

A.2 Chapter 4: Basic Topology on R

1. Apply De Morgan’s laws for sets.

2. For the forward direction, argue by contradiction that some limit point x0 of E is an

element of Ec, which is open. Thus, on open interval may be found that contains x0

but does not intersect E. For the converse direction, show that the complement of E

is open, using Definition 4.2.

3. Use the density of the rationals from Corollary 3.19.

4. Show that singleton sets {x} are closed in R. Then, use the result from Exercise 1 of

this chapter.

5. For an arbitrary ε > 0, show that (a−ε, a+ε) and (b−ε, b+ε), respective neighborhoods

of a and b. intersect (a, b).
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6. For the first two statements, consider any n ∈ N or m ∈ Z. What can you say about

the neighborhoods (n − 1
2 , n + 1

2 ) and (m − 1
2 ,m + 1

2 ) or n and m? Where do they

intersect N and Z? For the last result, use the density of rationals, Corollary 3.19.

7. a) Use Exercise 1 of this chapter.

b) If E is closed, then E is one of closed sets that contains E. For the other direction

use part (a) above.

c) Prove that x ∈ E if and only if there exists a neighborhood of x that contains no

element of E, using the above definition of E. By definition,

(E)c =
⋃
{Kc : K is closed and E ⊆ K}

=
⋃
{U : U is open and U ⊆ Ec}

How does x ∈ (E)c imply that there exist a neighborhood that contains no

element of E?

d) For one inclusion, show that E ⊆ E and apply result (c). For the other, Suppose

that x ∈ E ∩ Ec to show that x ∈ E′. Use part (c) and Theorem 4.8 to show x

is a limit point of E.

e) Apply Theorem 3.12 to result (c). For an arbitrary ε > 0, consider the neighbor-

hoods (sup(E)− ε, sup(E) + ε) and (inf(E)− ε, inf(E) + ε) of sup(E) and inf(E),

respectively. Can we always find elements of E in these neighborhoods?

A.3 Chapter 5: Real-valued Sequences

1. For the forward direction, prove by contrapositive. If x 6= 0, pick an ε > 0 such that

|x| ≥ ε.

3. Use the contrapositive of Lemma 5.5.

4. b) Pick ε0 = 1. For any N ∈ N we need to find an n ≥ N such that |xn − 0| = xn ≥
1. If N is a multiple of 3, N suffices. If N is not a multiple of 3, which n could

we pick?

5. Call lim
n→∞

xn = x and lim
n→∞

yn = y. Suppose by contradiction that x > y. Consider

ε0 = x − y. Pick an N ∈ N such that |xn − x| < ε0
4 and |yn − y| < ε0

4 for all n ≥ N

(why can this N be picked?). Show that for such n ≥ N , xn > yn, a contradiction.

For example, begin by noting

xn − yn = (xn − x) + (x− y) + (y − yn) ≥ x− y − |xn − x| − |yn − y| .
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6. Prove that

a) Apply Theorem 5.6 and use induction on k.

b) Multiply numerator and denominator by 1
n2 and use part (a) along with Theorem

5.6.

c) Same argument as with part (b), only now multiply by 1
nk .

d) Repeat part (b).

e) Suppose P (n) has degree k and Q(n) has degree l with k < l. Repeat part (c),

multiplying by 1
nl .

7. Use a similar technique as in the proof of Theorem 5.6.1. We know that for all n ∈ N,

|bn| ≤M for some M ≥ 0. If M = 0, bn = 0 for all n ∈ N and the result follows. Let

ε > 0. For M > 0, pick an N ∈ N such that |an − 0| = |an| < ε
M for all n ≥ N . Show

that for such n ≥ N , |anbn − 0| < ε.

8. Adapt the proof of Theorem 5.8 while working with infima instead.

9. a) Use induction to show that xn is a decreasing sequence, i.e. xn ≥ xn+1 for all

n ∈ N. For a lower bound, use induction to show that xn > 1 for all n ∈ N. With

limit lim
n→∞

xn = x, we know x is a solution to x2 − 2x+ 1 = 0.

b) Prove this sequence is increasing with an upper bound of 2. The limit x satisfies

x2 − x− 2 = 0. Why can’t x = −1?

c) Show that xn is decreasing with a lower bound of 0. The limit x satisfies x2 −
3x+ 1 = 0.

10. If a = 0, the result is trivial. If 0 < a < 1, show that the sequence xn = an

is decreasing and bounded below by 0. To show that the limit x is 0, note that

x = lim
n→∞

an+1 = a lim
n→∞

an = ax. Therefore, the limit satisfies x(a − 1) = 0. What

does our hypothesis on a require?

11. Use the fact that for all n ∈ N, −1 ≤ sin(n) ≤ 1.

13. Since (xn)n∈N is unbounded, then for every k ∈ N, there exists an nk ∈ N such that

|xnk
| > k, or rather that 1

|xnk |
< 1

k . Can these nk be chosen so that n1 < n2 < n3 <

· · · ? Use the Squeeze Theorem for the inequality 0 < 1

|xnk |
< 1

k to prove the result.

14. For the forward direction, given a bounded infinite subset E ⊆ R, we may create a

sequence of distinct elements of E, say (xn)n∈N. The Bolzano-Weierstrass Theorem

says that this sequence (xn)n∈N has a convergent subsequence (xnk
)k∈N with limit x.

Show that x is a limit point of E.
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For the converse direction, suppose we have a bounded sequence of real numbers

(xn)n∈N. If (xn)n∈N consists of a finite number of distinct elements {xn1 , . . . , xnm},
then there has to be an infinite repetition of one of the xni . Our convergent subse-

quence is this constant subsequence of xni terms. If xn has infinite distinct elements,

then by our hypothesis, E = {xn : n ∈ N} is an infinite bounded subset of R and thus

has a limit point x. Show that there exists a subsequence (xnk
)k∈N that converges to

x.

15. The distance between subsequent terms of this sequence satisfies |x1 − x2| = 1
2 ,

|x3 − x4| = 1
3 , |x6 − x7| = 1

4 , and so on. Given an ε > 0, there exists N ∈ N
such that 1

N < ε. Can you figure out how far you need to go in the sequence so that

|xn − xn+1| ≤ 1
N < ε?

To show xn is not Cauchy, try the problematic ε0 = 1. For any N ∈ N, can you find

m,n ≥ N such that |xm − xn| ≥ 1?

16. Suppose that (xn)n∈N is Cauchy with a subsequence (xnk
)k∈N that converges to x.

Pick an N ∈ N such that |xn − xm| < ε
2 and |xnk

− x| < ε
2 for all n,m, k ≥ N . Then

for n ≥ N , |xn − x| ≤ |xn − xnk
| + |xnk

− x| < ε
2 + ε

2 = ε. Why do we get that

|xn − xnk
| < ε

2 as well?

17. You will be relying on Theorem 5.19.

18. Suppose by contradiction that N is bounded above by some x0 ∈ R, i.e. n ≤ x0 for all

n ∈ N. Consider the sequence (n)n∈N. This sequence is bounded above and increasing,

so by Theorem 5.8, lim
n→∞

n = x, for some x ∈ R. What is the contradiction here? Use

Definition 5.2 with ε = 1
2 .

A.4 Chapter 6: Continuity

2. For an irrational number ξ ∈ [0, 1], we use the fact that as rationals approach ξ, their

denominators grow larger and larger without bound. Thus, for any ε > 0, pick an

N ∈ N such that 1
N < ε. It is a bit technical, but we may also pick a δ > 0 such

that for rationals p
q ,
∣∣∣pq − ξ∣∣∣ < δ implies 1

q <
1
N . Finish the proof by showing that for

all x ∈ [0, 1] with |x− ξ| < δ. |f(x)− f(ξ)| = |f(x)| < ε. Work in cases, when x is

rational and irrational.

To show that f is discontinuous at every rational pq , use the density of the irrationals,

Corollary 3.20.

3. This is an application of Theorem 6.8.

4. a) Use the facts that sin(a) − sin(b) = 2 cos(a+b2 ) sin(a−b2 ) for any a, b ∈ R and

|sin(x)| ≤ |x| for all x ∈ R.
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b) Use the identity cos(x) = sin(x+ π
2 ).

c) Apply Theorem 6.8.

d) Apply Theorem 6.8.

5. Consider the sequence xn = 2
(4n+1)π so that lim

n→∞
xn = 0. What does the sequence

(f(xn))n∈N converge to? Why does this prove f is not continuous at 0, by Theorem

6.7?

6. Define g(x) = −f(x) and apply the lemma.

7. a) Consider the function f(x) = cos(x)− x. Apply Lemma 6.11.

c) Polynomials p(x) of odd degree extend to positive and negatives as x moves far

from 0 in either directions. Essentially, we can find always find an M ≥ 0 such

that p(−M) and p(M) are on different sides of the y-axis. Use this to deduce the

result.

9. Try δ = ε.

10. Mimic the technique used to solve Exercise 5 of this chapter.

11. a) Follow the proof of Theorem 6.9.

b) For some counterexamples, consider D = R and f(x) = g(x) = x for the product.

With D = (0,∞), try f(x) = 1 and g(x) = x for the quotient.

A.5 Chapter 7: Differentiation

1. Use the substitution x = c + h and show that lim
h→0

x = c. Rewrite the limit on the

right-hand side.

3. a) Note that f(x) = xn = xn−1 · x. Use the product rule to find the derivative:

f ′(x) = (xn−1 · x) = (n− 1)xn−2 · x+ xn−1.

b) Use the quotient rule from Theorem 7.5 and the fact that x−n = 1
xn for n ∈ N.

4. a) Use the alternate presentation of a derivative from Exercise 2 above. Then, use

trigonometric sum identities and the fact that

lim
x→0

sin(x)

x
= 1.

b) Use the identity cos(x) = sin(π2 − x).

c) Apply Theorem 7.5.

6. Apply the Mean Value Theorem.

7. Consider the function h(x) = f(x)− g(x) and apply part (d) of the previous exercise.
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A.6 Chapter 8: Integration

1. Imitate the proof of Example 8.10.

2. Imitate the proof of Example 8.10.

3. Negate the alternate characterization in Theorem 8.9. Show that for any partition

P of [0, 1], the mi and Mi values as in Definition 8.3 are always equal to 0 and 1,

respectively.

4. For the function g(x) = f(x) + c, how do mi(f) and Mi(f) compare to mi(g) and

Mi(g), with notation from Definition 8.3?

5. For Darboux-integrability, use part (c) of the previous exercise. For Riemann-integrability,

f(ti) = c for any ti ∈ [xi, xi+1], for any partition P = {x1, . . . , xn} of [a, b].

6. Apply Exercises 4 and 5.

7. a) Since |f(x)| ≤ M for some M ≥ 0,
∣∣f(x)2 − f(y)2

∣∣ ≤ 2M |f(x)− f(y)| for any

x, y ∈ [a, b].

b) Use the identity fg = 1
4 ((f + g)2 − (f − g)2).

8. Let ε > 0. For the forward direction, pick a partition that satisfies Theorem 8.9

for ε. If c ∈ P , then split P into partitions P1 of [a, c] and P2 of [c, b]. How do

U(P1, f)− L(P1, f) and U(P2, f)− L(P2, f) compare to U(P, f)− L(P, f)? If c 6= P ,

throw it in to start with a partition finer than P and split into P1 and P2 as above.

For the converse direction, pick two respective partitions of [a, c] and [c, b] satisfying

Theorem 8.9 for ε
2 . Take the union P of these two partitions (which will be a partition

of [a, b]) and show that U(P, f)− L(P, f) < ε

9. Show that the function h(x) = f(x) − g(x), which is 0 except at the finitely many

points, is integrable. Set M = max{|h(xi)| : i = 1, . . . ,m} and construct a partition

P that isolates the problematic points, say in subintervals [xi − ε
4Mm , xi + ε

4Mm ].

Over every other subinterval, h = 0. Compute U(P, h) and L(P, h). Conclude with

g = h+ f ∈ R([a, b]). To compute
∫ b
a
g, show that

∫ b
a
h = 0.

10. You will be using the Intermediate Value Theorem and the fact that m ≤ f(x) ≤ M

implies m(b− a) ≤
∫ b
a
f ≤M(b− a).

A.7 Chapter 9: The Fundamental Theorem of Calculus

1. Imitate the proof of Example 9.1.

102



2. If f is continuous, then it admits an antiderivative F (x) =
∫ x
a
f by Theorem 9.3.

Furthermore, F (b)− F (a) =
∫ b
a
f . Write the analogous equations for

∫ c
a
f and

∫ b
c
f .

3. Use the same geometric techniques as in Example 9.1.

4. Don’t forget the Chain Rule for derivatives.

5. Try the substitution u = x2.

6. Multiply by 1 = csc x+cos x
csc x+cos x and use the trig derivative formulas derived in Exercise 5

of Chapter 7.

7. There is still a product of two functions in this integral. How might you switch

derivatives?

8. Denote the desired integral by I :=
∫ 1

0
ex sin(x) dx and go through the process of

integration by parts twice. You should end up with an equation in I.
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