Discreteness of postcritically finite maps in p-adic moduli space, with R. L. Benedetto
Trans. Amer. Math. Soc. 377 (2024), no. 3, 2027-2048. (Available at https://www.ams.org/journals/tran/2024-377-03/S0002-9947-2023-09085-7/S0002-9947-2023-09085-7.pdf).
A finiteness property of postcritically finite unicritical polynomials, with R. L. Benedetto Math. Res. Lett. 30 (2023), no. 2, 295-317. (Available at https://link.intlpress.com/JDetail/1806601586916880386). Distribution of integral division points on the algebraic torus, with P. Habegger Transactions of the Amer. Math. Soc. vol 371 (2019), no. 1, 357—386. (Available at https://www.ams.org/journals/tran/2019-371-01/S0002-9947-2018-07238-5/). Integral points on the Chebyshev dynamical systems J. of the Korean Math. Soc. 52 (2015), no. 5, 955—964 (Available at http://koreascience.or.kr/article/JAKO201525947432052.page). Integral division points on curves, with David Grant Compositio Math. 149 (2013), 2011—2035 (Available at https://www.cambridge.org/core/journals/compositio-mathematica/article/integral-division-points-on-curves/926FCD580EB982FB89FA76B94F8FC75F). A nondensity property of preperiodic points on the projective plane J. of the London Math. Soc. (2), vol. 83 (2011), part 3, 691--710 (Available at https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/jdq097). A nondensity property of preperiodic points on Chebyshev dynamical systems J. of Number Theory, 131 (2011), no. 4, 750--780 A finiteness property for preperiodic points of Chebyshev polynomials, with Thomas J. Tucker Int. J. of Number Theory, vol 6 (2010), no. 5, 1011--1025 (Available at https://www.worldscientific.com/doi/abs/10.1142/S1793042110003356). Algebraic points on the projective line J. of the Korean Math. Soc. 45 (2008), no. 6, 1635--1646 (Available at http://koreascience.or.kr/article/JAKO200811850423345.page). A finiteness property of torsion points, with M. Baker and R. Rumely Algebra & Number Theory, Vol. 2 (2008), no. 2, 217--248 (Available at https://msp.org/ant/2008/2-2/p06.xhtml). Height uniformity for integral points on elliptic curves Transactions of the Amer. Math. Soc. 358 (2006), no. 4, 1657--1675 (Available at https://www.ams.org/journals/tran/2006-358-04/S0002-9947-05-03760-8/). Equidistribution of small subvarieties of an abelian variety, with M. Baker New York J. of Math. 10 (2004), 279--285 (Available at http://nyjm.albany.edu/j/2004/10_279.html). Height uniformity for algebraic points on curves Compositio Math. 134 (1), (2002), 35--57