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Abstract

We give a local proof of an index theorem for a Dirac-type operator that is invariant
with respect to the action of a foliation groupoid G. If M denotes the space of units
of GG then the input is a G-equivariant fiber bundle P — M along with a G-invariant
fiberwise Dirac-type operator D on P. The index theorem is a formula for the pairing
of the index of D, as an element of a certain K-theory group, with a closed graded
trace on a certain noncommutative de Rham algebra Q*5 associated to G. The proof
is by means of superconnections in the framework of noncommutative geometry.

1 Introduction

It has been clear for some time, especially since the work of Connes [9] and Renault [27], that
many interesting spaces in noncommutative geometry arise from groupoids. For background
information, we refer to Connes’ book [11, Chapter I1]. In particular, to a smooth groupoid G
one can assign its convolution algebra C2°(G), which represents a class of smooth functions
on the noncommutative space specified by G.

An important motivation for noncommutative geometry comes from index theory. The no-
tion of groupoid allows one to unify various index theorems that arise in the literature,
such as the Atiyah-Singer families index theorem [2], the Connes-Skandalis foliation index
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theorem [13] and the Connes-Moscovici covering space index theorem [12]. All of these the-
orems can be placed in the setting of a proper cocompact action of a smooth groupoid G
on a manifold P. Given a G-invariant Dirac-type operator D on P, the construction of [12]
allows one to form its analytic index Ind, as an element of the K-theory of the algebra
C*(G) ® R, where R is an algebra of infinite matrices whose entries decay rapidly [11,
Sections I11.4, I111.7.y]. When composed with the trace on R, the Chern character ch(Ind,)
lies in the periodic cyclic homology group PHC,(C2°(G)). The index theorem, at the level
of Chern characters, equates ch(Ind,) with a topological expression ch(Ind;).

We remark that in the literature, one often sees the analytic index defined as an element of
K-theory of the groupoid C*-algebra C*(G). The index in K,(C°(G) ®@ R) is a more refined
object. However, to obtain geometric and topological consequences from the index theorem,
it appears that one has to pass to C¥(G); we refer to [11, Chapter III] for discussion. In this
paper we will work with C°(G).

We prove a local index theorem for a Dirac-type operator that is invariant with respect to
the action of a foliation groupoid. In the terminology of Crainic-Moerdijk [15], a foliation
groupoid is a smooth groupoid G with discrete isotropy groups, or equivalently, which is
Morita equivalent to a smooth étale groupoid.

A motivation for our work comes from the Connes-Skandalis index theorem for a compact
foliated manifold (M, F) with a longitudinal Dirac-type operator [13]. To a foliated manifold
(M, F) one can associate its holonomy groupoid Gj,;, which is an example of a foliation
groupoid. The general foliation index theorem equates Ind, with a topological index Ind;.
For details, we refer to [11, Sections 1.5, 11.8-9, II1.6-7].

We now state the index theorem that we prove. Let M be the space of units of a foliation
groupoid G. It carries a foliation F. Let p be a closed holonomy-invariant transverse cur-
rent on M. There is a corresponding universal class w, € H*(BG;0), where o is a certain
orientation character on the classifying space BG. Suppose that G acts freely, properly and
cocompactly on a manifold P. In particular, there is a submersion 7 : P — M. There is an
induced foliation 7*F of P with the same codimension as F, satisfying T7*F = (dn) 'TF.
Let g7 be a smooth G-invariant vertical Riemannian metric on P. Suppose that the vertical
tangent bundle 7'Z is even-dimensional and has a G-invariant spin structure. Let SZ be the
corresponding vertical spinor bundle. Let V be an auxiliary G-invariant Hermitian vector
bundle on P with a G-invariant Hermitian connection. Put £ = SZ @ V, a G-invariant
Zo-graded Clifford bundle on P which has a G-invariant connection. The Dirac-type oper-
ator () acts fiberwise on sections of E. Let D be its restriction to the sections of positive
parity. (The case of general G-invariant Clifford bundles E' is completely analogous.) Let
i : P — P/G be the quotient map. Then P/G is a smooth compact manifold with a
foliation F = (7*F)/G satistying (du) 'TF = Tx*F. Put V = V /G, a Hermitian vector
bundle on P/G with a Hermitian connection VV. The G-action on P is classified by a map
v: P/G — BG, defined up to homotopy.

The main point of this paper is to give a local proof of the following theorem.



Theorem 1

~

(ch(Ind D), p) = /P GATE) (V) v, (1)

Here Ind D lies in K,(C*®(G) ® R). If M is a compact foliated manifold and one takes
P = G = G} then one recovers the result of pairing the Connes-Skandalis theorem with
p; see also Nistor [24].

In saying that we give a local proof of Theorem 1, the word “local” is in the sense of Bismut’s
proof of the Atiyah-Singer family index theorem [6]. In our previous paper [16] we gave a
local proof of such a theorem in the étale case. One can reduce Theorem 1 to the étale
case by choosing a complete transversal 7', i.e. a submanifold of M, possibly disconnected,
with dim(7") = codim(F) and which intersects each leaf of the foliation. Using 7', one can
reduce the holonomy groupoid G to a Morita-equivalent étale groupoid G,;. We gave a local
proof of Connes’ index theorem concerning an étale groupoid G,; acting freely, properly and
cocompactly on a manifold P, preserving a fiberwise Dirac-type operator ) on P. Our local
proof has since been used by Leichtnam and Piazza to prove an index theorem for foliated
manifolds-with-boundary [21].

In the present paper we give a local proof of Theorem 1 working directly with folia-
tion groupoids. In particular, the new proof avoids the noncanonical choice of a complete
transversal T'.

The overall method of proof is by means of superconnections in the context of noncommuta-
tive geometry, as in [16]. However, there are conceptual differences with respect to [16]. As
in [16], we first establish an appropriate differential calculus on the noncommutative space
determined by a foliation groupoid G. The notion of “smooth functions” on the noncommu-
tative space is clear, and is given by the elements of the convolution algebra B = C°(G).
We define a certain graded algebra Q*B which plays the role of the differential forms on the
noncommutative space. The algebra 2*B is equipped with a degree-1 derivation d, which is
the analog of the de Rham differential. Unlike in the étale case, it turns out that in general,
d?> # 0. The reason for this is that to define d, we must choose a horizontal distribution
THM on M, where “horizontal” means transverse to F. In general T M is not integrable,
which leads to the nonvanishing of d?. This issue does not arise in the étale case.

As we wish to deal with superconnections in such a context, we must first understand how
to do Chern-Weil theory when d? # 0. If d? is given by commutation with a 2-form then a
trick of Connes [11, Chapter I11.3, Lemma 9] allows one to construct a new complex with
d* = 0, thereby reducing to the usual case. We give a somewhat more general formalism that
may be useful in other contexts. It assumes that for the relevant B-module £ and connection
V : & — Q'B®g&, there is a linear map [ : £ — Q2B ®p £ such that

[(bE) — bI(€) = d*(b)¢ (2)

and

[(VE) = VI(¢) (3)



for b € B, £ € £. With this additional structure, we show in Section 2 how to do Chern-Weil
theory, both for connections and superconnections on a B-module £. In the case when d? is
a commutator, one recovers Connes’ construction of Chern classes.

Next, we consider certain “homology classes” of the noncommutative space. A graded trace
on *B is said to be closed if it annihilates Im(d). A closed holonomy-invariant transverse
current p on the space of units M gives a closed graded trace on 2*B.

The action of GG on P gives rise to a left B-module &£, which essentially consists of compactly-
supported sections of E coupled to a vertical density. We extend £ to a left-2*B module
Q*E of “E-valued differential forms”. There is a natural linear map [ : & — Q2 satisfying
(2) and (3).

We then consider the Bismut superconnection Ag on £. The formal expression for its Chern
character involves e~ 4% +1. The latter is well-defined in Hom®(&,Q*E), an algebra consisting
of rapid-decay kernels. We construct a graded trace 7 : Hom* (&, Q*E) — Q*B. This allows
us to define the Chern character of the superconnection by

ch(As) = R (7‘6_ Ag“) : (4)

Here R is the rescaling operator which, for p even, multiplies a p-form by (2mi)~ 2.

Now let p be a closed holonomy-invariant transverse current on M as above. Then p(ch(Ay))
is defined and we compute its limit when s — 0, to obtain a differential form version of the
right-hand-side of (1). (In the case when P = G = G} an analogous computation was
done by Heitsch [18, Theorem 2.1]).

Next, we use the argument of [16, Section 5] to show that for all s > 0, (ch(Ind D), p) =
p(ch(Ay)). (In the case when P = G = G}, this was shown under some further restrictions
by Heitsch [18, Theorem 4.6] and Heitsch-Lazarov [19, Theorem 5].) This proves Theorem
1.

We note that our extension of [16] from étale groupoids to foliation groupoids is only partial.
The local index theorem of [16] allows for pairing with more general objects than transverse
currents, such as the Godbillon-Vey class. The paper [16] used a bicomplex Q**B of forms, in
which the second component consists of forms in the “noncommutative” direction. There was
also a connection V on £ which involved a differentiation in the noncommutative direction.
In the setting of a foliation groupoid, one again has a bicomplex 2**B and a connection V.
However, (3) is not satisfied. Because of this we work instead with the smaller complex of
forms Q2*°B, where this problem does not arise.

The paper is organized as follows. In Section 2 we discuss Chern-Weil theory in the context
of a graded algebra with derivation whose square is nonzero. In Section 3 we describe the
differential algebra 2*B associated to a foliation groupoid G. In Section 4 we add a manifold
P on which G acts properly. We define a certain left-B module £ and superconnection Ay on



€. We compute the s — 0 limit of p(ch(Ay)). In Section 5 we explain the relation between the
superconnection computations and the K-theoretic index, construct the cohomology class
w, € H*(BG;0) and prove Theorem 1. We show that Theorem 1 implies some well-known
index theorems.

In an appendix to this paper we give a technical improvement to our previous paper [16].
The index theorem in [16] assumed that the closed graded trace n on Q*(B,CI') extended
to an algebra of rapidly decaying forms Q*(B, B“). The appearance of Q*(B, B¥) was due to
the noncompact support of the heat kernel, which affects the trace of the superconnection
Chern character. In the appendix we show how to replace Q*(B, B¥) by Q*(B, CI'), by using
finite propagation speed methods. Let f € C°(R) be a smooth even function with support
in [—e, €]. Let f be its Fourier transform. We can define f(A,) and show that (R Tf(AS))

is defined for graded traces n on Q*(B,CI'). We prove the corresponding analog of [16,
Theorem 3], with the Gaussian function in the definition of the Chern character replaced by
an appropriate function f . This then implies the result stated in [16, Theorem 3] without
the condition of 7 being extendible to Q*(B,5*). We remark that this issue of replacing
(B, B¥) by Q*(B,CI') does not arise in the present paper.

More detailed summaries are given at the beginnings of the sections.

We thank the referee for useful comments.

2 The Chern Character

In this section we collect some algebraic facts needed to define the Chern character of a
superconnection in our setting. We consider an algebra B and a graded algebra 2* with
0" = B. We assume that Q* is equipped with a degree-1 derivation d whose square may
be nonzero. If £ is a left B-module then the notion of a connection V on & is the usual one
from noncommutative geometry; see Connes [11, Section I11.3, Definition 5] and Karoubi [20,
Chapitre 1]. We assume the additional structure of a map [ satisfying (2) and (3). We show
that V2 — [ is then the right notion of curvature. If £ is a finitely-generated projective B-
module then we carry out Chern-Weil theory for the connection V, and show how it extends
to the case of a superconnection A. Many of the lemmas in this section are standard in the
case when d?> = 0 and [ = 0, but we present them in detail in order to make clear what
goes through to the case when d? # 0. In the case when d? is given by a commutator, the
Chern character turns out to be the same as what one would get using Connes’ X-trick [11,
Section III.3, Lemma 9.

Let B be an algebra over C, possibly nonunital. Let Q = @52, Q' be a graded algebra with
0 = B. Let d : Q* — Q*™! be a graded derivation of Q*. Define o : Q* — Q*™2 by a = d?;



then for all w,w’ € QF,

aldw) = da(w), alwd) = aw)w + walw). (5)

By a graded trace, we will mean a linear functional n : Q* — C such that

n(a(w)) =0, N(lw,o) =0 (6)

for all w,w’ € Q*. Define d'n by (d'n)(w) = n(dw). Then the graded traces on Q* form a
complex with differential d*. A graded trace n will be said to be closed if d'n = 0, i.e. for
all w € %, n(dw) = 0.

Example 1 : Let F be a complex vector bundle over a smooth manifold M. Let V¥
be a connection on E, with curvature 6% € Q?(M;End(F)). Put B = C*(M;End(E)) and
O = Q*(M;End(F)). Let d be the extension of the connection V¥ to Q*(M;End(E)).
Then a(w) = 0F w — wOF. If ¢ is a closed current on M then we obtain a closed graded
trace n on Q* by n(w) = [.tr(w).

Let € be a left B-module. We assume that there is a C-linear map [ : & — Q% ®g € such
that for all b € B and £ € &,

1(66) = a(b) € + bI(E). (7)
Example 2 : Suppose that for some 0 € Q% a(w) = fw — wh. Then we can take [(£) = 6€.

Lemma 1 There is an extension of | to a linear map | : Q* @ E — Q2 @5 E so that for
we N and peQRgE,
) = alw)p + wiln). ®)

PROOF. We define | : Q* @c & — Q2 @z E by
Hlw®f) = aw)f + wli(f). (9)
Then for b € B,

l(wh®§&) = a(wb) & + wbl(§) = a(w)bé + wa(b) & + wbl(§) (10)
— a(w) b + wi(bE) = U(w® bE).

Thus [ is defined on Q* ®p £. Next, for w,w’ € Q* and £ € &,

l(wW') = a(ww) € + w'l(€) = a(w)w' & + wa(w) & + wd' 1(€) (11)
= a(w)w' & + wl(W§).

This proves the lemma.



Let V : £ — Q! ®3 & be a connection, i.e. a C-linear map satisfying
V(E) = db® €& + bVE (12)

for all b € B, £ € £. Extend V to a C-linear map V : Q* ®3 & — Q! @5 &€ so that for all
we N and € €€,

V(weé) = do®€ + (-1 wve. (13)
We assume that for all £ € £,
[(VE) = VI(¢). (14)

Lemma 2 V? — | : £ = Q2 ®pE is left-B-linear.

PROOF. Forbe Band £ € &,

(V2 — D)(b¢) = V(db® & + bVE) — 1(bE) = d*b@ & + bV — 1(bE) (15)
= a(b)E + bV — 1(bE) = b(V? = 1)(€).

This proves the lemma.

Put Qf, = Q*/[Q*, Q*], the quotient by the graded commutator, with the induced d. For sim-
plicity, in the rest of this section we assume that B is unital and £ is a finitely-generated pro-
jective left B-module. Consider the graded algebra Hompg (£,Q* ®5 ) = Endg: (2" ®5E).
There is a graded trace on Homp (€, Q* @5 &), with value in QF,, defined as follows. Write

ab’

& as BYe for some idempotent e € My (B). Then any T € Homg (€, Q* @5 £) can be repre-
sented as right-multiplication on BYe by a matrix T € My (Q*) satisfying T = T = Te.
By definition tr(T) = £N, T, mod [Q*,Q*]. It is independent of the representation of &
as BVe.
Given T1, T, € Endg« (" ®5 &), define their (graded) commutator by

[Tl,TQ] = T10T2 — (—]_)|T1HT2|TQOT1. (16)
For T' € Endg- (2* ®5 &), define [V, T] € Endc (Q* ®5 €) by

V. 1)) = (1) (V(T(r)) = T(Vp)) (17)

for pe V" @ &.

Lemma 3 [V,T] € Endg- (V" ®5€).



PROOF. Given w € Q* and p € Q* ®5 €&,

IV, T)(wp) = (=) (V(T(wp) — T(V(ww)) (18)
= (—D)PHE(T (T () = T((dw)p + (=1)wVp))
= (=) ()T () + (=1)*wV(T() = (do)T(n) — (=1)° WT(Vp))
w [V, T)(p).

This proves the lemma.

Lemma 4 Given T1,T, € Endg- (2 ®5 &),

[V, T10oTy] = Ty o[V, T3] + (—D)I2I[V, T1] o T. (19)

PROOF. Given p € " ®5¢,
V.10 T)(n) = (D) {V(Ti(Ta(w) — Ti(Ta(V (1)} (20)

(Ty o[V, T3)) (n) = (-1 Ty (V(Ta(p) — Ta(V())) (21)
and

(V.10 1) () = [V.Ti](Ta(p)) = (—=1)WHV(T(Ta (k) — Ti(V(Ta(w)} - (22)
The lemma follows.
Lemma 5 Given T}, T, € Endg (* ®5 &),

V. [T = (1L [V B + (-1)PV, 11, Ty). (23)

PROOF. This follows from (16) and (19). We omit the details.

Lemma 6 For T € Endg- (2 ®5¢),
tr([V,T]) = dtr(T) € 2, (24)
PROOF. Let us write £ = BYe for an idempotent e € My (B). Given A € Homg (€, Q! ®5

&), it acts on BYe on the right by a matrix A € My(Q!) with A = eA = Ae. Then there
is some A € Homp(€, Q' ®p &) so that for p € Q* @& = (Q*)Ve,

Vip) = (dp)e + (=) p A; (25)

in fact, this equation defines A.



An element 7' € Endg- (Q* ®5 ) acts by right multiplication on Q* @z € = (Q*)Ve by a
matrix 7 € My(Q*) satisfying T = €T = Te. Then for £ € £ = BVe,

V. T](¢) = V(ET) — (V)T = {d(€T) e + (-1 ETA} — {(d€) e + EA}T (26)
= ¢((dT)e + (-1 TA — AT)

Thus [V, T] acts as right multiplication by the matrix
e(dT)e + (-DIT'TA — AT, (27)

and so tr([V,T]) = tr(e(dT)e). On the other hand, using the identity e(de)e = 0 and

taking the trace of N x N matrices, we obtain

dtr(T) = dtr(eTe) = tr((de)Te + e(dT)e + (=1)" eT(de)) (28)
= tr ((de YeTe + e(dT)e + (—1)"TeTe( de))
Etr(e(d YeT + e(dT)e + (—1)71 Te(de) )

This proves the lemma.

Lemma 7 [V,V?—1] = 0.

PROOF. This follows from (14).

Definition 1 The Chern character form of V is
(V) = tr( - ) €, (29)

Lemma 8 Given &, if n is a closed graded trace on Q* then n(ch(V)) is independent of the
choice of V. If ;1 and 1o are homologous closed graded traces then 1, (ch(V)) = n2(ch(V)).

PROOF. Let V; and V3 be two Connections on &. For t € [0,1], define a connection by

V(t) = tVy + (1 —=t)Vy. Then & = V, — V; € Homg(&, Q' @5 &). We claim that
n(ch(V(t))) is independent of ¢. As M = V& + ¥V, we have
dch(V) 1 v odAv_\ wa) 1 AV v
it om “((th it V) ) = T m “([the D (30)
— —Ldtr dive_vjwzl
2mi dt
Then
1 1 IO
h(Vz) = ch(Vy) = ——d [ & ((v2 _ V) e T ) dt, (31)
0



from which the claim follows. We note after expanding the exponential in (31), the integral
gives an expression that is purely algebraic in V; and V.

If 7; and 7, are homologous then there is a graded trace 7' such that n; — 7y = d'n’. Thus
m(ch(V)) — m(ch(V)) = n'(dch(V)). (32)

However,

deh(V) = dir (e- ”) - trdv,e— Vi?l]) ~ 0. (33)

This proves the lemma.

Example 3 : With the notation of Example 1, let ' be another complex vector bundle on
M, with connection V. Put £ = C®(M; E® F), with [(§) = (0P @) & for £ € €. Let V
be the tensor product of V¥ and V¥. Then one finds that n(ch(V)) = [.ch(VF).

If £ is Zy-graded, let A : & — Q" ®5 £ be a superconnection. Then there are obvious
extensions of the results of this section. In particular, let R be the rescaling operator on
Qcven which multiplies an element of Q2F by (2mi)~*.

Definition 2 The Chern character form of A is

ch(4) = R tr, () € g, (34)

We have the following analog of Lemma 8.

Lemma 9 Given &, if ) is a closed graded trace on 2* then n(ch(A)) is independent of the
choice of A. If ;1 and ny are homologous closed graded traces then n;(ch(A)) = no(ch(A)).

3 Differential Calculus for Foliation Groupoids

In this section, given a foliation groupoid G, we construct a graded algebra 2*B whose
degree-0 component B is the convolution algebra of G. We then construct a degree-1 deriva-
tion d = d of Q*B. Finally, we compute d>.

3.1 The differential forms

Let G be a groupoid. We use the groupoid notation of [11, Section II.5]. The units of G are
denoted G and the range and source maps are denoted r,s : G — G(©. To construct the

10



product of go, g1 € G, we must have s(go) = r(g1). Then 7(gog1) = r(go) and 5(gog1) = s(g1).
Given m € GO, put G™ = r~Y(m), G,, = s7H(m) and G™ = G™ N G,,.

We assume that G is a Lie groupoid, meaning that G and G© are smooth manifolds, and
r and s are smooth submersions. For simplicity we will assume that G is Hausdorff. The
results of the paper extend to the nonHausdorff case, using the notion of differential forms
on a nonHausdorff manifold given by Crainic and Moerdijk [14, Section 2.2.5]. (The paper
[14] is an extension of work by Brylinski and Nistor [8].)

The Lie algebroid g of G is a vector bundle over G(*) with fibers g,, = 7;,G™ = Ker(dr,y, :
T,G — TmG’(O)). The anchor map g — TG®, a map of vector bundles, is the restriction
of dsy, : TG — TGO to g,,. In general, the image of the anchor map need not be of
constant rank.

We now assume that G is a foliation groupoid in the sense of [15], i.e. that G satisfies one
of the three following equivalent conditions [15, Theorem 1] :

1. G is Morita equivalent to a smooth étale groupoid.

2. The anchor map of G is injective.

3. All isotropy Lie groups G of G are discrete.

Example 4 : If G is an smooth étale groupoid then G is a foliation groupoid. If (M, F)
is a smooth foliated manifold then its holonomy groupoid (see Connes [11, Section I1.8.a])
and its monodromy (= homotopy) groupoid (see Baum-Connes [3] and Phillips [26]) are
foliation groupoids. In this case, the anchor map is the inclusion map TF — TM. If a Lie
group L acts smoothly on a manifold M and the isotropy groups L,, = {l € L : ml = m}
are discrete then the cross-product groupoid M x L is a foliation groupoid.

Put M = G©. It inherits a foliation F, with the leafwise tangent bundle T'F being the
image of the anchor map.

Note that the foliated manifold (M,F) has a holonomy groupoid Hol which is itself a
foliation groupoid. However, Hol may not be the same as G. If GG is a foliation groupoid
with the property that G, is connected for all m then G lies between the holonomy groupoid
of F and the monodromy groupoid of F; see [15, Proposition 1] for further discussion. The

reader may just want to keep in mind the case when G is actually the holonomy groupoid
of a foliated manifold (M, F).

Let 7 = TM/TF be the normal bundle to the foliation. Given g € G, let U C M be a
sufficiently small neighborhood of s(g) and let ¢ : U — G be a smooth map such that
c(s(g)) = gand soc = Idy. Then d(roc)yy) : Ty M — TrgM sends Tyg)F to T F.
The induced map from 7y, to 7,5 has an inverse g, : 7,y — Ty called the holonomy of
the element g € G. It is independent of the choices of U and c.

Let D denote the real line bundle on M formed by leafwise densities. We define a graded

11



algebra *B whose components, as vector spaces, are given by
Q"B = CX(G; A" (r"1") ® s*D) (35)

In particular,
B = Q°B = C*(G;s*D) (36)

is the groupoid algebra. (Instead of using half-densities, we have placed a full density at the
source.) The product of ¢, € Q™ B and ¢, € Q"B is given by

@02)(9) = [ 0ulg) A aalg"). (37)

99" =g
In forming the wedge product, the holonomy of ¢’ is used to identify conormal spaces.

Let THM be a horizontal distribution on M, i.e. a splitting of the short exact sequence
0 —-TF — TM — 7 — 0. Then there is a horizontal differentiation d? : Q"B — Q'3
which we now define. The definition will proceed by building up d* from smaller pieces
(compare [11, Section II.7.cv, Proposition 3]).

First, the choice of horizontal distribution allows us to define a horizontal differential d? :
Q (M) — Q**Y(M) as in Bismut-Lott [7, Definition 3.2] and Connes [11, Section IIL.7.a].
Using the local description of an element of C*° (M;D) as a vertical dim(F)-form on M,
we also obtain a horizontal differential d¥ : C* (M;D) — C* (M;7* @ D) [11, Section
I11.7.a] and a horizontal differential d¥ : C> (M;A"7*) — C™ (M; A"1r*).

Given f € C*(G), we now define its horizontal differential d f € C> (G;r*7*) by simul-
taneously differentiating f with respect to its arguments, in a horizontal direction. That is,
consider a point g € G and a vector Xy € 7,(y). Put X; = ¢.(Xy). Next, use the horizontal

distribution T# "M to construct the corresponding horizontal vectors X, and X;. We now
have a vector X = (XO,Xl) € Tir(g),s(gn(M x M). It is the image of a unique vector
X € T,G under the immersion

(r,s) : G— M x M. (38)
We define d f by putting ((dHf)(XO)) (9) = X .
Next, to horizontally differentiate an element of C° (G; A™(r*7*) ® s*D), we write it as a

finite sum of terms of the form f r*(w) s*(8), with f € C*(G), w € C®(M;A"r*), and
B € C(M;D). For an element of this form, put

d" (fri(w)s*(8)) = (@ f)r*(w) s*(B) + fri(d"w)s"(B) + (=1)" fr(w) s (d"B), (39)
where the holonomy is used in defining products.

Lemma 10 The operator d™ is a graded derivation of Q*B.

12



PROOF. This follows from a straightforward computation, which we omit.

Put d = d¥. We now describe a = d?. Let T' € Q*(M; T F) be the curvature of the horizontal
distribution TH#M [7, (3.11)]. Tt is a horizontal 2-form on M with values in T'F, defined by
T(X1, Xy) = — Pt [ XH XH]. One can define the Lie derivative Ly : Q*(M) — Q*+2(M),
an operation which increases the horizontal grading by two, as in [7, (3.14)]. Then one can
define Ly : C®(M;D) — C°(M; A*m*®@D) and Ly : C®°(M;A"7*) — C=(M; A""7*) in

obvious ways.

Given f € C (G), we define its Lie derivative Lrf € C° (G; A*(r*7*)) by simultaneously
differentiating f with respect to its arguments, in the vertical direction. That is, consider a
point g € G and Xo, Yy € 7(g). Put X7 = ¢.(Xo) and Y7 = g¢.(Yp). Next, use the horizontal

distribution T# M to construct the correspondlng horizontal vectors XO, Xl, Yy and Y.
Consider the vertical vectors T(XO, Yy) € ¢ F and T(Xl, Y)) € Ty F. We now have a

total vector V = (T(XO,YO),T(Xl, YI)) € T(T(g),s(g))(M x M). It is the image of a unique

vector V' € T,G under the immersion (38). We define L f by putting ((Lrf)(Xo, Y0)) (9) =
Vf.

Now for fr*(w) s*(3) as before, we put
Lo (fri(w) s (8) = (Lof)r(w) s"(B) + fri(Low) s°(B) + fri(w) s (Lrar),  (40)
where the holonomy is used in defining products.

Lemma 11 We have
a = —ET. (41)

PROOF. This follows from the method of proof of [7, (3.13)] or [11, Section IIL.7.a].

Remark : One can consider o to be commutation with a (distributional) element of
the multiplier algebra C~> (G; A?*(pj7*) ® p;D), namely the one that implements the Lie
differentiation [11, Section III.7.cr, Lemma 4].

4 Superconnection and Chern character

In this section we consider a smooth manifold P on which G acts freely, properly and
cocompactly, along with a G-invariant Zs-graded vector bundle F on P. We construct
a corresponding left-B-module £. Given a G-invariant Dirac-type operator which acts on
sections of E, we consider the Bismut superconnections {Ag}sso0. We compute the s — 0
limit of the pairing between the Chern character of A; and a closed graded trace on 2*B

13



that is concentrated on the units M. More detailed summaries appear at the beginnings of
the subsections.

4.1 Module and Connection

In this subsection we consider a left B-module £ consisting of sections of F, and its extension
to a left Q*B-module Q*E. We construct a map [ : €& — Q€ satisfying (2). Given a lift 77 P
of TH M, we construct a connection V¢ on &.

Let P be a smooth G-manifold [11, Section I1.10.«, Definition 1]. That is, first of all, there
is a submersion 7 : P — M. Given m € M, we write Z,, = 7~ '(m). Putting

Px,G ={(pg) ePxG :p€ Zyh (42)

we must also have a smooth map P x, G — P, denoted (p, g) — pg, such that pg € Z)
and (pg1)g2 = p(gi1g2) for all (g1, g2) € GP. Tt follows that for each g € G, the map p — pg
gives a diffeomorphism from Z, ) to Zy). Let Dz denote the real line bundle on P formed
by the fiberwise densities.

Hereafter we assume that P is a proper G-manifold [11, Section I1.10.«, Definition 2], i.e.
that the map P x,. G — P x P given by (p,g) — (p,pg) is proper. We also assume that
G acts cocompactly on P, i.e. that the quotient of P by the equivalence relation (p ~ p/
if p = p'g for some g € () is compact. And we assume that G acts freely on P, i.e. that
pg = p implies that g € M. Then P/G is a smooth compact manifold.

Example 5 : Take P = G, with 71 = s. Then G acts properly, freely, and, if M is
compact, cocompactly on P.

We will say that a covariant object (vector bundle, connection, metric, etc.) on P is G-
invariant if it is the pullback of a similar object from P/G. Let E be a G-invariant Zs-
graded vector bundle on P, with supertrace try on End(E). Put &€ = CX(P; E). It is a
left-B-module, with the action of b € B on £ € £ given by

®)p) = [ b9) o). (43)

Gm(p)
In writing (43), we have used the g-action to identify E, and E,,.
Put
NE=CT(P;A"(m"T") @ F). (44)
Then Q*E is a left-Q2*B-module with the action of 2*B on Q*E given by

@) = [ 6l9) A wlpg) (15)

14



Let F be the foliation on P whose leaf through p € P consists of the elements pg where
g runs through the connected component of G™®) that contains the unit 7(p). Note that

dim(F) = dim(F). Given p € P and X,Y € 7y, let T(X,Y) € T,F be the lift of
T(X,Y) € TrnF. Define I : € — Q°E by saying that for X,V € 7, and £ € £,

UOX,Y)p) = ~T(X,Y)E. (46)
Here we have used the G-invariance of E to define the action of T(X,Y) on £.

Lemma 12 For all X,Y € 7y, bE B and { € &€,

[(bS) = a(b) & + bI(&). (47)
PROOF. We have
(1OE)(X,Y))(p) = —T(X,Y) /Gﬂp) blg)&lpg) = — |, T(XY)blg)&(pg),  (48)
(a®)(XY)E)p) = — | (T(XY)b + T(g.X,9.Y)b) (9) £(pg) (49)
" PUOXY)P) = = | bl9) T(9-X, 9.Y)&(pg)- (50)
Then

(L(BE)(X,Y))(p) — (ab)(X,Y)E)(p) — (BUE(X,Y))(p) = (51)
/Gﬂ(p) (T(Q*X’ 9:Y)b(g) E(pg) + blg) T(9. X, g*Y)f(pg)) .

We can write (51) more succinctly as

U(bg) — () — W) = [ Lalblo)¢(pg)), (52)

G (p)

where the Lie differentiation is at pg. The right-hand-side of (52) vanishes, being the integral
of a Lie derivative of a compactly-supported density.

We extend [ to a linear map [ : Q"€ — Q"2€ as Lie differentiation in the 7-direction with
respect to P.

Lemma 13 For allw € QO*B and p € Q*&,

Hwp) = a(w) p + wli(p). (53)
PROOF. The proof is similar to that of Lemma 12. We omit the details.
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There is a pullback foliation 7*F on P with the same codimension as F, satisfying Tn*F =
(dm) " 'TF.Let u : P — P/G be the quotient map. Then P/G is a smooth compact manifold
with a foliation F' = (7*F)/G satisfying (du) 'TF = Tm*F. We note that the normal
bundle NF to F satisfies p*NF = 7*r.

Let TH(P/G) be a horizontal distribution on P/G, transverse to F. Then (du) = (TH(P/G))
is a G-invariant distribution on P that is transverse to the vertical tangent bundle TZ. Put
TEHP = (du) Y(TH?(P/G)) N (dr) Y (TH M), a distribution on P that is transverse to m*F
and that projects isomorphically under 7 to TH M.

Let V& : £ — Q€ be covariant differentiation on & = C®(P; E) with respect to T P.

Lemma 14 V¢ is a connection.

PROOF. We wish to show that
VE(bE) = bVEE + (d7b)e. (54)

As the claim of the lemma is local on P, consider first the case when T (P/G) is integrable.
Let T2 P, and V§ denote the corresponding objects on P. Then one is geometrically in a
product situation and one can reduce to the case P = M, where one can check that (54)
holds. If T#(P/G) is not integrable then TH# P — TH P, € Hom(r*7,TZ) is the pullback
under 4 of an element of Hom(NF,TF). Hence TH P — TH P; is G-invariant and it follows
that V&€ — V¢ commutes with B, which proves the lemma.

We extend V¢ to act on Q*& so as to satisfy Leibnitz’ rule.

Lemma 15 For all £ € &,
(VEE) = VEI(©). (55)

PROOF. As d" commutes with (d)?, it follows that df commutes with L£r. As the claim
of the lemma is local on P, consider first the case when TH(P/G) is integrable. Let TH P,
and V¢ denote the corresponding objects on P. Then one is in a local product situation and
the lemma follows from the fact that d¥ commutes with L. If TH#(P/G) is not integrable
then V& — VY{ is given by covariant differentiation in the TZ direction, with respect to
THP — THP, € Hom(n*r, TZ). As T pulls back from M, V¢ — V¢ commutes with [. The
lemma follows.
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4.2 Supertraces

In this subsection we consider a certain algebra End} (£) of operators with smooth kernel
on P. We show that a trace on B, concentrated on the units M, gives a supertrace on
EndZ (€). We then consider an algebra Homz (€, Q*E) of form-valued operators. We show
that a closed graded trace on Q2*B, concentrated on M, gives rise to a closed graded trace

on Homp (€, 0*E).

An operator K € Endg(€) has a Schwartz kernel K (p/[p) so that

(K@) = [ €0) KWlp). (56)
=(p)
Define ¢',q : P xy P — P by ¢'(p/,p) = p' and q(p/,p) = p. Let Endj (€) denote
the subalgebra of Endg(€) consisting of operators whose Schwartz kernel lies in C2°(P Xy,
P;(¢) Dz @ Hom((¢')"E, q"E)).

Choose ® € C°(P;m*D) so that
L., e =1 (57)
for all p € P; that such a ® exists was shown by Tu [30, Proposition 6.11]. Define 7K €
C(M; D) by
(K)m) = [ o) tr. K(plp). (58)

m

Proposition 1 Let p be a linear functional on C°(M; D). Suppose that the linear functional
n on B, defined by

n(b) = (0], ), (59)

is a trace on B. Then po T is a supertrace on Endyg (£).

PROOF. Consider the algebra Endcee(ar)(€). An operator K € Endes(ar)(€) has a Schwartz
kernel K (p|p’) so that

(K&E) = [ Kol &) (60)

m(p)

(Note the difference in ordering as compared to (56).) For this proof, define ¢, ¢’ : Px P —
Pby q(p,p') = pand ¢'(p,p') = p'. Let Endge 5y (€) denote the subalgebra of Endce i) (€)
consisting of operators whose Schwartz kernel lies in C2°(P Xy P; ¢*Dz; @ Hom((¢')*E, ¢*E).
The product in Ende ) (€) is given by

(KEYl) = [ KGl") K7W, (61)

Note that an element of Endfw,)(€) is not necessarily G-invariant. Note also that there
is an injective homomorphism Endz'(€) — Endde ) (£)?, where op denotes the opposite
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algebra, i.e. with the transpose multiplication. There is a fiberwise G-invariant supertrace
Trs : Ende () — CZ(M) given by

(@r K)(m) = [ e K(plp). (62

Consider the algebra B®cear) Endg 11)(€). The product in the algebra takes into account
the action of B on EndZu M)(S ), which derives from the G-action on P. An element of the
algebra has a kernel K (g,p|p’), where p,p’ € Zy). The product is given by

Kk gplp) = [ [ Kigpg) ) Kalg" PG ). (63)
gg'=g //Ezs(g,)

The supertrace (62) induces a map T : B ®@czo(ary Endg 1) (€) — B by
(Tr K)(g) = [ tr K(g.plp) (64)
s(9)

Lemma 16 noTry is a supertrace on B @ce (v Endgee ) (€)-

PROOF. We can formally write
(o Tr)(K) = [ pm) [t K(m.plp), (65)

keeping in mind that p is actually distributional. Then
/ ) tr (Ki(g',pg'Ip") Ka((g) 0" () " 1))
P'EZy

(noTry) (K K,) = /g,eg/pez
(66)

B /g’eG /peZT(g’) /p”eZs(g'> p(?“(g’)) b (KQ((g/)*l,p( ) 1]p Kl g Py |p )>
g L ) (Kl 1) K)ot ).

r(g") s(g”)

r(g")

However, the fact that 7 is a trace on B translates into the fact that

/gecp(s(g)) flg) = /ger(T(g))f(g) (67)

for all f € C°(G), from which the lemma follows.

We define a map ¢ : Endj(€) — (B ®cee () Enddee ay (5))Op by

(i(K))(g,plp") = ®(pg~") K (plp"). (68)
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Lemma 17 The map © is a homomorphism.

PROOF. Given Kj, Ky € End3’ (€), we have

(i(]1) i(K2)) (9, plp) / | i) ple") ) i) ) (69)

S(g’)

e K" ) 20" Kl )

s(g”)

g/ (p|p// //) (p//) K( // //‘p)

1 —

N

m\tm\m\;

lgl/ Zs(g,)
- Il — / Kl(p‘p ) ( //(g//)_l) K2<p//‘p/)
9 =9 s(q”)
= D(pg™) /Z Ki(plp") Ka(p"|p")
s(g)

= (i(K2K1))(g, plp)-

Thus i gives a homomorphism from Endz (€)” to B ®ce(av) Endge ) (€), from which the
lemma follows.

Lemma 18 We have nolrsot = por.

PROOF. Given K € Endj(£), we have
(o Trooi(K) = [ plm) [ tr.(i(K))(m.plp) (70)
= [ olm) [ ®@) . K@) = (por)(K).

This proves the lemma.
Proposition 1 now follows from Lemmas 16-18.

Example 6 : Let u be a holonomy-invariant transverse measure for F. Let {U;}Y, be an
open covering of M by flowboxes, with U; = V; x W;, V; € R%™F) and W; C R* ™) Let
w; be the measure on V; which is the restriction of u. Let {¢;}¥, be a partition of unity that
is subordinate to {U;}X,. For f € C°(M; D), put p(f) = S, Jy, <fWi o f) dp;. Then p
satisfies the hypotheses of Proposition 1.

An operator K € Homp(&,Q*E) has a Schwartz kernel K (p'|p) so that

(K = [ &) K@) (71)

m(p)
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Let HomZ (€,Q2"E) denote the subspace of Hompg(E,Q"E) consisting of operators whose
Schwartz kernel lies in

CZ(P xy Py A" ((moq)"m") ® (¢')"Dz @ Hom((¢')"E, " E)). (72)

Define 7K € C°(M;A"7* ® D) by

(FK)m) = [ o) tr, K(plp). (73)

m

Proposition 2 Let p be a linear functional on C2°(M; A"m* @ D) Suppose that the linear
functional n on Q"B, defined by

n(é) = p(¢], ), (74)
is a graded trace on Q*B. Then po T is a graded trace on Homy (&€, Q*E).

PROOQOF. The proof is similar to that of Proposition 1. We omit the details.

Proposition 3 Let p be a linear functional on C2°(M;A"m* @ D) Suppose that the linear
functional n on Q"B, defined by

n(é) = p(¢],), (75)
is a closed graded trace on Q*B. Then pot annihilates [V, K| for all K € Homy (€, Q" 1E).

PROOF. It suffices to show that

(po )V, K]) = n(d"(r(K))). (76)

Let V& : C®(P) — C®(P;7*r*) be differentiation in the T# P-direction. It follows from
(73) that

(@ () m) = [ o(p) [V, K)(plp) + (77)

m

/ V&P (p) A tr, K(plp).
Now 7 (me Vb (p) A tr, K(p|p)) can be written as [, V&® A O for some G-invariant

O. From (57), [arm VE®(pg) = 0. Then decomposing the measure on P with respect to
P — P/G gives that [, V&® A O = 0. Equation (76) follows.

Example 7 : Following the notation of Example 6, let ¢ be a closed holonomy-invariant
transverse n-current for F. Let ¢; be the n-current on V; which is the restriction of ¢. Let
{¢:}X, be a partition of unity that is subordinate to {U;} . For w € C®°(M;A"m* @ D),
put p(w) = Zi]\i1<(fwi o w) , ¢;). Then p satisfies the hypotheses of Proposition 3.
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4.8 The s — 0 limit of the superconnection Chern character

In this subsection we extend End™(€) to an rapid-decay algebra End”(£). Given a G-
invariant Dirac-type operator acting on sections of F, we consider the Bismut superconnec-
tions {As}s=0 on €. We compute the s — 0 limit of the pairing between the Chern character
of A and a closed graded trace on Q*B that is concentrated on the units M.

We now choose a G-invariant vertical Riemannian metric g?# on the submersion 7 : P — M
and a G-invariant horizontal distribution 7% P. Given m € M, let d,,, denote the correspond-
ing metric on Z,,. We note that {Z,, },nen has uniformly bounded geometry.

Let Endy (£) be the algebra formed by G-invariant operators K as in (56) whose integral
kernels K (p'|p) € C°(P xu P;(¢')*Dz ® Hom((¢')*E, ¢*E)) are such that for all ¢ € Z¥,

sup e K (p|p)| < oo, (78)
(p',p)EPX M P

along with the analogous property for the covariant derivatives of K.

Proposition 4 Let p be a linear functional on C°(M; D). Suppose that the linear functional
n on B, defined by

n(b) = p(d], ), (79)

is a trace on B. Then po T is a supertrace on Endj(E).
PROOF. The proof is formally the same as that of Proposition 1. We omit the details

Let Homyz(E,Q*E) be the algebra formed by G-invariant operators K as in (71) whose
integral kernels

K(p'lp) € CZ(P xu PyA™((m 0 q)"7") ® (¢')"Dz ® Hom((¢')"E, ¢"E)) (80)
are such that for all ¢ € Z™T,

sup 24P | K (pp)| < oo, (81)
(p'p)EPX M P

along with the analogous property for the covariant derivatives of K.

Proposition 5 Let p be a linear functional on C2°(M; A"m* @ D) Suppose that the linear
functional n on Q"B, defined by

n(e) = p(¢], ), (82)
is a graded trace on Q*B. Then po T is a graded trace on Homp(E, Q*E).
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PROOF. The proof is formally the same as that of Proposition 2. We omit the details.

Proposition 6 Let p be a linear functional on C2°(M; A"m* @ D) Suppose that the linear
functional n on Q"B, defined by

n(¢) = p(9],,); (83)
is a closed graded trace on Q*B. Then po Tt annihilates [V, K| for all K € Hom$(E,Q"1E).

PROOQOF. The proof is formally the same as that of Proposition 3. We omit the details.

Suppose that Z is even-dimensional. Let E be a G-invariant Clifford bundle on P which is
equipped with a G-invariant connection. For simplicity of notation, we assume that £ =
SZ&QV, where SZ is a vertical spinor bundle and V is an auxiliary vector bundle on P. More
precisely, suppose that the vertical tangent bundle T'Z has a G-invariant spin structure. Let
SZ be the vertical spinor bundle, a G-invariant Z,-graded Hermitian vector bundle on P.
Let V be another G-invariant Zo-graded Hermitian vector bundle on P which is equipped
with a G-invariant Hermitian connection. That is, V is the pullback of a Hermitian vector
bundle G on P/G with a Hermitian connection VV. Then we put £ = SZ & V. The case
of general G-invariant Clifford bundles E can be treated in a way completely analogous to
what follows.

Let V7% be the Bismut connection on T'Z, as constructed using the horizontal distribu-
tion (dp) (T (P/G)) on P; see, for example, Berline-Getzler-Vergne [5, Proposition 10.2].
The G-invariance of V7% and VV implies that A(V7%) ch(VY) lies in C®(P; A*(TZ)* @
A (7 7%)).

Let @ € Endg (€) denote the vertical Dirac-type operator. From finite-propagation-speed
estimates as in Lott [22, Proof. of Prop 8], along with the bounded geometry of {Z,, }menm,
for any s > 0 we have

e~ ¥ 9 € End4(&). (84)

Let A, : £ — Q*E be the superconnection
1
Ay = s5Q + V& — ZC(TP). (85)
s

Here ¢(T") is Clifford multiplication by the curvature 2-form T of (du)~'(T"(P/QG)),
restricted to the horizontal vectors TH P. We note that the analogous connection term of the
Bismut superconnection [5, Proposition 10.15] has an additional term to make it Hermitian,
but in our setting this term is incorporated into the horizontal differentiation of the vertical
density. One can use finite-propagation-speed estimates, along with the bounded geometry
of {Z}menm and the Duhamel expansion as in [5, Theorem 9.48], to show that we obtain

a well-defined element e~ 4" = £7 of Hom$ (&, Q*E); see [18, Theorem 3.1] for an analogous
statement when P = G = Gy
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Let R be the rescaling operator which, for p even, multiplies a p-form by (27i)~ 5. Put
ch(4,) = R (re” %) € CX(M; A" @ D). (36)

Theorem 2 Given a linear functional p which satisfies the hypotheses of Proposition 6,

lim p(ch(4.)) = o ([ @ AT n(v7)). (87)

PROOF. Using Lemmas 13 and 14, A2 4+ Lz is G-invariant. Let A’ be the corresponding
Bismut superconnection on the foliated manifold P/G, a locally-defined differential operator
constructed using the horizontal distribution 77 (P/G). By construction, A2 4+ Lz is the
pullback under p of (AL)?, where we use the identification A*(7*7*) = p*A*(NF)*. From [5,
Theorem 10.23], the s — 0 limit of the supertrace of the kernel of e~ (4%)° when restricted to
the diagonal of (P/G) x (P/Q), is A(VTF) ch(V"). Then the s — 0 limit of the supertrace
of the kernel of ¢~ 4% £ 7, when restricted to the diagonal of P x P, is the pullback under
p of A(VTF) ch(VY), i.e. A(VTZ) ch(VY). The theorem follows,

Remark : If P = G = Gy, then an analogue of Theorem 2 appears in [18, Theorem 2.1].

If we put
G = {(p.p2) €Px P : w(p) = 7(p2)}/G. (88)

then G’ has the structure of a foliation groupoid, with units G'® = P/G. In this way we
could reduce from the case of G acting on P to the case of the foliation groupoid G’ acting
on itself. However, doing so would not really simplify any of the constructions.

5 Index Theorem
In this section we prove the main result of the paper, Theorem 5.
5.1 The index class

In this subsection we construct the index class Ind(D) € Ky(2). We describe its pairing with
a closed graded trace on B. We prove that the pairing of Ind(D) with the closed graded
trace equals the pairing of ch(Ay) with the closed graded trace.

Consider the algebra 2 = Endy (£). Let D : €T — & be the restriction of @ to the
positive subspace £ of £. We construct an index projection following Connes-Moscovici [12]
and Moscovici-Wu [23]. Let u € C*°(R) be an even function such that w(z) = 1 — z?u(z)
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is a Schwartz function and the Fourier transforms of u and w have compact support [23,
Lemma 2.1]. Define u € C*°([0, 00)) by @(z) = u(z?). Put P = u(D*D)D*, which we will
think of as a parametrix for D, and put S, = I — PD, S_. = I — DP. Consider the

operator
Sy —(I+Sy)P
I — + ( +) 7 (89)
D S_
with inverse
Sy PUI+S_
Lil _ + ( ) (90)
- D S_
The index projection is defined by
10 S? S (I+Sy)P
p _ L L_l _ + +( +) ) (91)
00 S.D I-8*
Put
00
Po = - (92)
01
By definition, the index of D is
Ind(D) = [p — po] € Ko(2). (93)

As @ is G-invariant, the operator [ of (46) commutes with p, and (47) holds for £ € Im(p).

If p is a linear functional which satisfies the hypotheses of Proposition 3, define the pairing
of p with Ind(D) by

(ch(Ind(D)), p) = (2mi)~ *o0/2 (94)

p(r(pe V0" iy — pyen VIO L))

where we have extended the ungraded trace 7 in the obvious way to act on (2 x 2)-matrices.
(See [16, Section 5] for the justification of the definition.)

Theorem 3 For all s > 0,

(ch(Ind(D)), p) = p(ch(Ay)). (95)

PROOF. The proof follows the lines of the proof of [16, Proposition 4 and Theorem 3], to
which we refer for details. We only present the main idea. Put

jt 2 K 1) 8 (4 B
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Then one can show algebraically that
(ch(Ind(D)), p) = p(R7e” 7)), (97)
where the 7 on the right-hand-side is now a graded trace. Next, one shows that
p(Rre V7 757) = pleh(4))) (98)

by performing a homotopy from V' to Ay, from which the theorem follows.

5.2 Construction of w,

In this subsection we construct the universal class w, € H*(BG;0). We express p(ch(A;)) as
an integral involving the pullback of w,.

Put V = V/G, a Hermitian vector bundle on P/G with a compatible connection V.

Let o(7) be the orientation bundle of 7, a flat real line bundle on M. Let p satisfy the
hypotheses of Proposition 3. By duality, p corresponds to a closed distributional form xp €
QImAM)=n(\T: o(7)).

Let EG denote the bar construction of a universal space on which G acts freely. That is,
put

G(n) = {(gl,...,gn) . 5(91) - T(QQ))"'aS<gn—1) = T(Q’n)} <99)

Then EG is the geometric realization of a simplicial manifold given by E,G = GV, with
face maps

L dn if i =0,
(907---,91'7191‘;---7911) ifl <i<n

and degeneracy maps

Si(.g(]?"'agn) = (907"'7gi5179’i+17"'gn)7 0 S [ S n. (101)

Here 1 denotes a unit. The action of G on EG is induced from the action on E,G given
by (go,---,9n) 9 = (go,---,9n9). Let BG be the quotient space. Define ' : EG — M as
the extension of (go, ..., gn) — 8(gn). Put Q"2(EG) = Q™ (G"*)) and Q™2(BG) =
(Qmm2(EG))C. Let Q*(BG) be the total complex of Q**(BG). Here the forms on G+ can
be either smooth or distributional, depending on the context. We will speak correspondingly
of smooth or distributional elements of Q*(BG@G). In either case, the cohomology of Q*(BG)
equals H*(BG;R). There is a similar discussion for twistings by a local system.

The action of G on P is classified by a continuous G-equivariant map v : P — EG. Let
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v : P/G — BG be the G-quotient of . There are commutative diagrams

o~

P Y EG
,,J ”'l (102)
M Id. M
and R
P —— EG
J l (103)
P/G —— BG.

As P/G is compact, we may assume that v is Lipschitz.

Consider (7")*(xp) € Q*(EG; (7')*o(1)), a closed distributional form on EG. Let o be the G-
quotient of (7')*o(7), a flat real line bundle on BG. Then (7')*(*p) pulls back from a closed
distributional form in Q*(BG; 0), which represents a class in H*(BG;0). Let w, € Q*(BG;0)
be a closed smooth form representing the same cohomology class. Let @, € Q*(EG; (7')*o(T))
be its pullback to EG. As v is Lipschitz, v*w, is an L>-form on P/G.

Theorem 4

p( /Z o A(VTY) ch(V‘7)> - /P ATE) v) v, (104)

PROOF. Let * (& A(V'%) ch(V")) be the dual of & A(V"%) ch(V"). We will think of
* (<I> A(VT?) ch(Va)) as a cycle on P and (7/)*(xp) as a cocycle on EG. Then

P (/uni(v”) ch(VG)) — (m, (* (cp A(VT?) ch(V‘N/)» kbt (105)

I
T
i)
2
<

~
N
~—
o
=
<
=
)
*
)
s}

Remark : If one were willing to work with orbifolds P/G instead of manifolds then one
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could extend Theorem 4 to general proper cocompact actions, with w, € H*(BG;0) being a
cohomology class on the classifying space for proper G-actions.

5.8  Proof of index theorem

Theorem 5 If G acts freely, properly discontinuously and cocompactly on P and p satisfies
the hypotheses of Proposition 6 then

~

(ch(Ind D), p) = /P GATE) (V) v, (106)

PROOF. If Z is even-dimensional then the claim follows from Theorems 2, 3 and 4. If Z
is odd-dimensional then one can reduce to the even-dimensional case by a standard trick
involving taking the product with a circle.

Example 8 : Suppose that (M, F) is a closed foliated manifold. Take P = G = G- Let p
be a holonomy-invariant transverse measure for F. Take p as in Example 6. Then Theorem
5 reduces to Connes’ L?-foliation index theorem [11, Section I.5.y, Theorem 7]

(nd D, p) = (A(TF) ch(V), RS,). (107)
where RS), is the Ruelle-Sullivan current associated to p [11, Section 1.5.3].

Example 9 : Let (M,F) be a closed manifold equipped with a codimension-¢ foliation.
Take P = G = Gj. Let H(Tr F) denote the Haefliger cohomology of (M, F) [17]. Recall
that there is a linear map [ : H*(M) — H*7""9(Tr F). Let ¢ be a closed holonomy-invariant
transverse current for F. Take p as in Example 7. Then Theorem 5 becomes

~

(ch(Ind D), p) = { /f A(TF) ch(V), o). (108)

This is a consequence of the Connes-Skandalis foliation index theorem, along with the result
of Connes that p gives a higher trace on the reduced foliation C*-algebra; see [4,10,13].

Example 10 : Let M be a closed oriented n-dimensional manifold. Let G = M be the
groupoid that just consists of units. Let P be a closed manifold that is the total space of
an oriented fiber bundle 7 : P — M with fiber Z. Let ¢ be a closed current on M with
homology class [c] € H,(M;C). With x : H,(M;C) — H"*(M;C) being the Poincaré
isomorphism, Theorem 5 becomes

(ch(Ind D), ¢) = /P ATZ) ch(V) 7*(x[d))). (109)
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This is a consequence of the Atiyah-Singer families index theorem [2], as the right-hand-side

~

equals ([, A(TZ) ch(V),c).
Example 11 : Let G be a discrete group that acts freely, properly discontinuously and
cocompactly on a manifold P. As its space of units M is a point, let p be the identity map
C>(M) — C. Then Theorem 5 reduces to Atiyah’s L?-index theorem [1]

(Ind D, p) = / A(TP/G) ch(V). (110)

P/G

A Appendix

This is an addendum to [16], in which we use finite propagation speed methods to improve
[16, Theorem 3]. In the improved version we allow 7 to be a closed graded trace on Q*(B, CI'),
as opposed to Q*(B, B¥). There is a similar improvement of [16, Theorem 6.

We will follow the notation of [16].
A.1 Finite propagation speed

Let f € C°(R) be a smooth even function with support in [—e, €]. Put

Fw) = [ F@) coslay) da, (A1)

a smooth even function. With Ay as in [16, (4.7)], put

F(A,) = /R (@) cos (z Ay) da. (A.2)

Let us describe cos (z A;) explicitly, using the fact that it satisfies

(2 + A2) cos(z A,) = 0. (A.3)
Write A2 = s2Q? + X. We first consider a solution u(-,z) of the inhomogeneous wave
equation
(22 + Q) u = f (A.4)
with initial conditions u(-,0) = ug(-) and u,(-,0) = 0. Then u(-, z) is given by

r —0)sQ)
5Q

u(z) = cos(zsQ)uy + /Ox sin(( f(v) dv. (A.5)
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Putting f = — Xu and iterating, we obtain an expansion of cos (z A;) of the form

cos (x As) = cos(zsQ) — /Ox Sin((wszgv)SQ)

Because X has positive form degree, there is no problem with the convergence of the series.

X cos(vsQ) dv + ... (A.6)

From finite propagation speed results, we know that cos(zs@) has a Schwartz kernel cos(xsQ)(p'|p)
with support on {(p/,p) : d(p/,p) < xs}, and similarly for SmSZ;Q); see Taylor [29, Chapter
4.4]. Using the compactness of h, it follows that the (m,n)-component f (As)(mn lies in

Hom?go(s)xr(cé’o(ﬁs E), "B, CT) ®cse(ysr C=(M; E)).

Finally, define chf(AS) € Q*(B,CI')y by

~

Chf(AS) = RTIS7<e>f<AS). (A7)

A.2  Index Pairing

In this subsection we show that for all s > 0 and all closed graded traces n on Q*(B,CI),

o~

(ch#(As),n) = (f(Ind(D)),n). The method of proof is essentially the same as that of [16,
Section 5], which in turn was inspired by Nistor [25].

In analogy to [16, Section 5.3], put & = C>°(M;E) and A = EndZe p)wr (C’fo(]\//\[; E))
Let D : £t — £~ be the restriction of @ to the positive subspace &1 of £. We construct
an index projection following [12] and [23]. Let u € C*°(R) be an even function such that
w(z) = 1—xu(z) is a Schwartz function and the Fourier transforms of u and w have compact
support [23, Lemma 2.1]. Define u € C*°([0,00)) by u(z) = u(z?). Put P = w(D*D)D*,
which we will think of as a parametrix for D, and put Sy = I — PD, S_ = 1 — DP.

Consider the operator
Sy —(I+Sy)P
L[S ursoP) s
D S_

with inverse

. <S+ P(HS))_ A9

The index projection is defined by
1oy | S S (I+Sy)P
p =1L L™ = . (A.10)
00 S.D I-8*
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Put
00
01

Ind(D) = [p — po] € Ko(2A). (A.12)

By definition, the index of D is

Put QO = Homg (g5 (C2° (M; E),Q*(B,CI) ®Rcoo(Byxr C° (M; E)), a graded algebra with
derivation V = V10 4 O If 5 is a closed graded trace on Q*(B ,CI"), define the pairing
of n with Ind(D) by

(f(Ind(D)),n) = (2mi) /2 (Try, (F(poVop) — flpooVopy)),m.  (A13)
(See [16, Section 5] for the justification of the definition.)

Theorem 6 For all s > 0,

~

(chp(As),m) = (f(Ind(D)), n). (A.14)

PROOF. The proof follows the lines of the proof of [16, Proposition 4 and Theorem 3], to
which we refer for details. We only present the main idea. Put

RGN I

Then one can show algebraically that

~ ~

(f(Ind(D)),n) = (R Trse) f(V'),n). (A.16)

Next, one shows that
(R Troe f(V),m) = (chi(As),m) (A.17)

by performing a homotopy from V' to A, from which the theorem follows. The argument
is the same as in the proof of [16, Proposition 4]. We refer to [16], and will only indicate the
necessary modifications of the equations in [16, Section 5.2].

As in [16, (5.20)], for t € [0, 1] put

((Vl)—i- t D* )
A(t) = . (A.18)



The analog of [16, (5.26)] is

cos (x A(t)) = (A.19)

(COS (x\/((V’)+)2 + 2 D*D) Z )

0 D cos (x/(V)")* + 2D*D) P)

where

- _ /a: sin ((m—v)\/((V’)ﬂQ + 2 D*D)
0 (V)2 + 2 DD
(t((V)", D7) + (V)" — (V)7) D) cos (v NCAER: DD*) dv

(A.20)

and the left-hand-side of (A.19) is to be multiplied by f and then integrated. As in [16,
(5.30)),

0 D*
a (A.21)
dt D 0

The analog of [16, (5.31)] is

- (dA (Cos (2/((V)*)? + ©2 D*D) z )) A

dt 0 D cos (:c\/((V’)+)2 + 2 D*D) P
— _Tr(DZ) =

esin ((z—v)/(V)9)2 + 2DD) e N e
T (D / N (oD (7). D7) + (V)7 = (7))D)

cos (v \/(V—)2 + 2 DD*)) dv.
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The analog of [16, (5.32)] is
5 / sin (2 = v)/((V))")? + £ D*D)
0 \/((V’)+)2 + 2 DD

cos <v \/(V—)Q + 2 DD*) dv =
/x sin ((ZB - U)\/(V*)Q + 2 DD*)
0 (V)2 + 2 DD~

cos (v \/(V—)Q + 2 DD*) dv =
/oc sin ((a: - v)\/(V_)2 + 2 DD*)
0 (V)2 + 2 DD+

cos (v \/(V—)2 + 2 DD*) dv.

(V)7 D] + (V) = (V))D")  (A23)

D (I(7)7,D7) + () = (7))D")

V™, DD

The analog of [16, (5.33)] is
v ( /0 v Sin ((”w;)\f ii); ;; DD) V-, DD"] (A.24)
Ccos (v \/(V_)2 + 2 DD*) dv) =
— t2d Tr (cos (m \/(V_)2 + 2 DD*)) .

The rest of the proof is as in [16, Proof of Proposition 4].

~

We define (ch(Ind(D)),n) by formally taking f(z) = e =" in (A.13). This makes perfect

sense, given that n acts on elements of a fixed degree.

Corollary 1 a. The left-hand-side of (A.14) only depends on f through the derivative
fldeam)(0).

b. If f(deg(n))(o) _ ddes(m == then,

deg(n)
dtestnz z=0

(ch(Ind(D)),n) = (chx(As),n). (A.25)

PROOF. a. From (A.13), the right-hand-side of (A.14) only depends on f through the

derivative f (deg()(0). From Theorem 6, the same must be true of the left-hand-side.

ddeg(n)e*z2

b. If f (deg(m) () = ol i then f has the same relevant term in its Taylor expansion

z

as the function z — e, from which the corollary follows.
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A.8 Pairing of the Chern character of the index with general closed graded traces

In this subsection we prove a formula for the pairing of the Chern character of the index
with a closed graded trace n on Q*(B,CI"). The idea is to approximate the Gaussian func-
tion, which was previously used in forming the superconnection Chern character, by an
appropriate function f :

Theorem 7 Given a closed graded trace n on Q*(B,CT),

(ch(Ind(D)), n / o A(VTZ) ch(VY) e~ n> (A.26)

PROOF. Choose an even function f € C°(R) so that f satisfies the hypothesis of Corol-
lary 1.b. By Corollary 1, it suffices to compute

hm(chf(A ), 7). (A.27)

With reference to (A.2), the local supertrace tr, cos (z Ay) (p,p) exists as a distribution in
x. The singularities near x = 0 of the distribution have coefﬁcients that are the same, up
to constants, as the leading terms in the z-expansion of try e 43 s(p,p); see, for example,
Sandoval [28] for the analogous statement for cos(xs@). As in [5, Lemma 10.22], these are
the terms that enter into the local index computation. Now cos (x A;) satisfies (A.3), in
analogy to the fact that e —t 4% gatisfies the heat equation

(0 + A42) et =0, (A.28)

We can perform a Getzler rescaling as in the proof of [16, Theorem 2], to see that for
the purposes of computing the local index, we can effectively replace the A%-term in the
differential operator of (A.3) by [16, (4.12)]. Thus we are reduced to considering the wave
operator of the harmonic oscillator Hamiltonian. The rest of the proof of the theorem can
in principle be carried out in a way similar to that of [16, Theorem 2]. However, we can
shortcut the calculations by noting that Corollary 1, along with the choice of f, implies that
the result of the local calculation must be the same as lim,_o(ch(A;),n), which was already
calculated in [16, Theorem 2.
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