FORMALITY FOR ALGEBROID STACKS

PAUL BRESSLER, ALEXANDER GOROKHOVSKY, RYSZARD NEST, AND BORIS TSYGAN

Abstract. We extend the formality theorem of M. Kontsevich from deformations of the structure sheaf on a manifold to deformations of gerbes.

1. Introduction

In the fundamental paper [11] M. Kontsevich showed that the set of equivalence classes of formal deformations the algebra of functions on a manifold is in one-to-one correspondence with the set of equivalence classes of formal Poisson structures on the manifold. This result was obtained as a corollary of the formality of the Hochschild complex of the algebra of functions on the manifold conjectured by M. Kontsevich (cf. [10]) and proven in [11]. Later proofs by a different method were given in [14] and in [5].

In this paper we extend the formality theorem of M. Kontsevich to deformations of gerbes on smooth manifolds, using the method of [5]. Let X be a smooth manifold; we denote by \mathcal{O}_X the sheaf of complex valued C^∞ functions on X. For a twisted form \mathcal{S} of \mathcal{O}_X regarded as an algebroid stack (see Section 2.5) we denote by $[\mathcal{S}]_{dR} \in H^3_{dR}(X)$ the de Rham class of \mathcal{S}. The main result of this paper establishes an equivalence of 2-groupoid valued functors of Artin \mathbb{C}-algebras between $\text{Def}(\mathcal{S})$ (the formal deformation theory of \mathcal{S}, see [2]) and the Deligne 2-groupoid of Maurer-Cartan elements of L_∞-algebra of multivector fields on X twisted by a closed three-form representing $[\mathcal{S}]_{dR}$:

Theorem 6.1. Suppose that \mathcal{S} is a twisted form of \mathcal{O}_X. Let H be a closed 3-form on X which represents $[\mathcal{S}]_{dR} \in H^3_{dR}(X)$. For any Artin algebra R with maximal ideal m_R there is an equivalence of 2-groupoids

$$\text{MC}^2(s(\mathcal{O}_X)_H \otimes m_R) \cong \text{Def}(\mathcal{S})(R)$$

natural in R.

A. Gorokhovsky was partially supported by NSF grant DMS-0400342. B. Tsygan was partially supported by NSF grant DMS-0605030.
Here, $s(O_X)_H$ denotes the L_∞-algebra of multivector fields with the trivial differential, the binary operation given by Schouten bracket, the ternary operation given by H (see 5.3) and all other operations equal to zero. As a corollary of this result we obtain that the isomorphism classes of formal deformations of \mathcal{S} are in a bijective correspondence with equivalence classes of the formal twisted Poisson structures defined by P. Severa and A. Weinstein in [13].

The proof of the Theorem proceeds along the following lines. As a starting point we use the construction of the Differential Graded Lie Algebra (DGLA) controlling the deformations of \mathcal{S}. This construction was obtained in [1, 2]. Next we construct a chain of L_∞-quasi-isomorphisms between this DGLA and $s(O_X)_H$, using the techniques of [5]. Since L_∞-quasi-isomorphisms induce equivalences of respective Deligne groupoids, the result follows.

The paper is organized as follows. Section 2 contains the preliminary material on jets and deformations. Section 3 describes the results on the deformations of algebroid stacks. Section 4 is a short exposition of [5]. Section 5 contains the main technical result of the paper: the construction of the chain of quasi-isomorphisms mentioned above. Finally, in Section 6 the main theorem is deduced from the results of Section 5.

The paper was written while the first author was visiting Max-Planck-Institut für Mathematik, Bonn.

2. Preliminaries

2.1. Notations. Throughout this paper, unless specified otherwise, X will denote a C^∞ manifold. By O_X we denote the sheaf of complex-valued C^∞ functions on X. A^*_X denotes the sheaf of differential forms on X, and T_X the sheaf of vector fields on X. For a ring K we denote by K^\times the group of invertible elements of K.

2.2. Jets. Let $pr_i: X \times X \to X$, $i = 1, 2$, denote the projection on the i^{th} factor. Let $\Delta_X: X \to X \times X$ denote the diagonal embedding. Let $I_X := \ker(\Delta_X^\ast)$.

For a locally-free O_X-module of finite rank E let

$$\mathcal{J}^k_X(E) := (pr_1)_\ast \left(O_{X \times X}/T_X^{k+1} \otimes_{pr_2^{-1}O_X} pr_2^{-1}E \right);$$

$$\mathcal{J}^k_X := \mathcal{J}^k_X(O_X).$$

It is clear from the above definition that \mathcal{J}^k_X is, in a natural way, a commutative algebra and $\mathcal{J}^k_X(E)$ is a \mathcal{J}^k_X-module.

Let
1^{(k)} : \mathcal{O}_X \to \mathcal{J}_X^k

denote the composition

\mathcal{O}_X \xrightarrow{\text{pr}_1^*} (\text{pr}_1)_* \mathcal{O}_{X \times X} \to \mathcal{J}_X^k

In what follows, unless stated explicitly otherwise, we regard \(\mathcal{J}_X^k(\mathcal{E}) \) as a \(\mathcal{O}_X \)-module via the map \(1^{(k)} \).

Let \(j^k : \mathcal{E} \to \mathcal{J}_X^k(\mathcal{E}) \)
denote the composition

\(\mathcal{E} \xrightarrow{\text{pr}_1^*} (\text{pr}_1)_* \mathcal{O}_{X \times X} \otimes \mathcal{E} \to \mathcal{J}_X^k(\mathcal{E}) \)

The map \(j^k \) is not \(\mathcal{O}_X \)-linear unless \(k = 0 \).

For \(0 \leq k \leq l \) the inclusion \(\mathcal{I}_X^{l+1} \to \mathcal{I}_X^{k+1} \) induces the surjective map \(\pi_{l,k} : \mathcal{J}_X^l(\mathcal{E}) \to \mathcal{J}_X^k(\mathcal{E}) \). The sheaves \(\mathcal{J}_X^k(\mathcal{E}) \), \(k = 0, 1, \ldots \) together with the maps \(\pi_{l,k}, k \leq l \) form an inverse system. Let \(\mathcal{J}_X(\mathcal{E}) = \mathcal{J}_X^\infty(\mathcal{E}) := \varprojlim \mathcal{J}_X^k(\mathcal{E}) \). Thus, \(\mathcal{J}_X(\mathcal{E}) \) carries a natural topology.

The maps \(1^{(k)} \) (respectively, \(j^k \)), \(k = 0, 1, 2, \ldots \) are compatible with the projections \(\pi_{l,k} \), i.e. \(\pi_{l,k} \circ 1^{(l)} = 1^{(k)} \) (respectively, \(\pi_{l,k} \circ j^l = j^k \)). Let \(1 := \varprojlim 1^{(k)} \), \(j^\infty := \varprojlim j^k \).

Let

\[d_1 : \mathcal{O}_{X \times X} \otimes_{\text{pr}_1^{-1}\mathcal{O}_X} \text{pr}_2^{-1}\mathcal{E} \to \text{pr}_1^{-1}\mathcal{A}_X^1 \otimes_{\text{pr}_1^{-1}\mathcal{O}_X} \mathcal{O}_{X \times X} \otimes_{\text{pr}_2^{-1}\mathcal{O}_X} \text{pr}_2^{-1}\mathcal{E} \]

denote the exterior derivative along the first factor. It satisfies

\[d_1(\mathcal{I}_X^{k+1} \otimes_{\text{pr}_1^{-1}\mathcal{O}_X} \text{pr}_2^{-1}\mathcal{E}) \subset \text{pr}_1^{-1}\mathcal{A}_X^1 \otimes_{\text{pr}_1^{-1}\mathcal{O}_X} \mathcal{I}_X^k \otimes_{\text{pr}_2^{-1}\mathcal{O}_X} \text{pr}_2^{-1}\mathcal{E} \]

for each \(k \) and, therefore, induces the map

\[d_1^{(k)} : \mathcal{J}_X^k(\mathcal{E}) \to \mathcal{A}_X^1 \otimes_{\mathcal{O}_X} \mathcal{J}_X^{k-1}(\mathcal{E}) \]

The maps \(d_1^{(k)} \) for different values of \(k \) are compatible with the maps \(\pi_{l,k} \) giving rise to the canonical flat connection

\[\nabla^{\text{can}} : \mathcal{J}_X(\mathcal{E}) \to \mathcal{A}_X^1 \otimes_{\mathcal{O}_X} \mathcal{J}_X(\mathcal{E}) \].
2.3. Deligne groupoids. In [4] P. Deligne and, independently, E. Getzler in [8] associated to a nilpotent DGLA \(g \) concentrated in degrees grater than or equal to \(-1\) the 2-groupoid, referred to as the Deligne 2-groupoid and denoted \(MC^2(g) \) in [1], [2] and below. The objects of \(MC^2(g) \) are the Maurer-Cartan elements of \(g \). We refer the reader to [8] (as well as to [2]) for a detailed description. The above notion was extended and generalized by E. Getzler in [7] as follows.

To a nilpotent \(L_\infty \)-algebra \(g \) Getzler associates a (Kan) simplicial set \(\gamma _\bullet(g) \) which is functorial for \(L_\infty \) morphisms. If \(g \) is concentrated in degrees greater than or equal to \(1 - l \), then the simplicial set \(\gamma _\bullet(g) \) is an \(l \)-dimensional hypergroupoid in the sense of J.W. Duskin (see [6]) by [7], Theorem 5.4.

Suppose that \(g \) is a nilpotent \(L_\infty \)-algebra concentrated in degrees grater than or equal to \(-1\). Then, according to [6], Theorem 8.6 the simplicial set \(\gamma _\bullet(g) \) is the nerve of a bigroupoid, or, a 2-groupoid in our terminology. If \(g \) is a DGLA concentrated in degrees grater than or equal to \(-1\) this 2-groupoid coincides with \(MC^2(g) \) of Deligne and Getzler alluded to earlier. We extend our notation to the more general setting of nilpotent \(L_\infty \)-algebras as above and denote by \(MC^2(g) \) the 2-groupoid furnished by [6], Theorem 8.6.

For an \(L_\infty \)-algebra \(g \) and a nilpotent commutative algebra \(m \) the \(L_\infty \)-algebra \(g \otimes m \) is nilpotent, hence the simplicial set \(\gamma _\bullet(g \otimes m) \) is defined and enjoys the following homotopy invariance property ([7], Proposition 4.9, Corollary 5.11):

Theorem 2.1. Suppose that \(f: g \rightarrow h \) is a quasi-isomorphism of \(L_\infty \) algebras and let \(m \) be a nilpotent commutative algebra. Then the induced map

\[
\gamma _\bullet(f \otimes \text{Id}): \gamma _\bullet(g \otimes m) \rightarrow \gamma _\bullet(h \otimes m)
\]

is a homotopy equivalence.

2.4. Algebroid stacks. Here we give a very brief overview, referring the reader to [3, 9] for the details. Let \(k \) be a field of characteristic zero, and let \(R \) be a commutative \(k \)-algebra.

Definition 2.2. A stack in \(R \)-linear categories \(C \) on \(X \) is an \(R \)-algebroid stack if it is locally nonempty and locally connected, i.e. satisfies

1. any point \(x \in X \) has a neighborhood \(U \) such that \(C(U) \) is nonempty;
2. for any \(U \subseteq X, x \in U, A, B \in C(U) \) there exits a neighborhood \(V \subseteq U \) of \(x \) and an isomorphism \(A|_V \cong B|_V \).

For a prestack \(C \) we denote by \(\tilde{C} \) the associated stack.
For a category C denote by iC the subcategory of isomorphisms in C; equivalently, iC is the maximal subgroupoid in C. If C is an algebroid stack then the stack associated to the substack of isomorphisms \tilde{iC} is a gerbe.

For an algebra K we denote by K^+ the linear category with a single object whose endomorphism algebra is K. For a sheaf of algebras \mathcal{K} on X we denote by \mathcal{K}^+ the prestack in linear categories given by $U \mapsto \mathcal{K}(U)^+$. Let \mathcal{K}^+ denote the associated stack. Then, \mathcal{K}^+ is an algebroid stack equivalent to the stack of locally free \mathcal{K}^{op}-modules of rank one.

By a twisted form of \mathcal{K} we mean an algebroid stack locally equivalent to \mathcal{K}^+. It is easy to see that the equivalence classes of twisted forms of \mathcal{K} are bijective correspondence with $H^2(X; Z(\mathcal{K})^\times)$, where $Z(\mathcal{K})$ denotes the center of \mathcal{K}.

2.5. Twisted forms of \mathcal{O}_X. Twisted forms of \mathcal{O}_X are in bijective correspondence with \mathcal{O}_X^\times-gerbes: if \mathcal{S} is a twisted form of \mathcal{O}_X, the corresponding gerbe is the substack $i\mathcal{S}$ of isomorphisms in \mathcal{S}. We shall not make a distinction between the two notions.

The equivalence classes of twisted forms of \mathcal{O}_X are in bijective correspondence with $H^2(X; \mathcal{O}_X^\times)$. The composition

$$\mathcal{O}_X^\times \to \mathcal{O}_X^\times/\mathbb{C}^\times \xrightarrow{\log} \mathcal{O}_X/\mathbb{C} \xrightarrow{\text{DR}} \mathcal{J}_X/\mathcal{O}_X$$

induces the map $H^2(X; \mathcal{O}_X^\times) \to H^2(X; \text{DR}(\mathcal{J}_X/\mathcal{O}_X)) \cong H^2(\Gamma(X; \mathcal{A}_X^\natural \otimes \mathcal{J}_X/\mathcal{O}_X), \nabla^\text{can})$. We denote by $[\mathcal{S}]$ the image in the latter space of the class of \mathcal{S}.

The short exact sequence

$$0 \to \mathcal{O}_X \xrightarrow{1} \mathcal{J}_X \to \mathcal{J}_X/\mathcal{O}_X \to 0$$

gives rise to the short exact sequence of complexes

$$0 \to \Gamma(X; \mathcal{A}_X^\natural) \to \Gamma(X; \text{DR}(\mathcal{J}_X)) \to \Gamma(X; \text{DR}(\mathcal{J}_X/\mathcal{O}_X)) \to 0,$$

hence to the map (connecting homomorphism) $H^2(X; \text{DR}(\mathcal{J}_X/\mathcal{O}_X)) \to H^3_{dR}(X)$. Namely, if $B \in \Gamma(X; \mathcal{A}_X^\natural \otimes \mathcal{J}_X)$ maps to $\overline{B} \in \Gamma(X; \mathcal{A}_X^\natural \otimes \mathcal{J}_X/\mathcal{O}_X)$ which represents $[\mathcal{S}]$, then there exists a unique $H \in \Gamma(X; \mathcal{A}^\natural)$ such that $\nabla^\text{can} B = \text{DR}(1)(H)$. The form H is closed and represents the image of the class of $\overline{\mathcal{B}}$ under the connecting homomorphism.

Notation. We denote by $[\mathcal{S}]_{dR}$ the image of $[\mathcal{S}]$ under the map

$$H^2(X; \text{DR}(\mathcal{J}_X/\mathcal{O}_X)) \to H^3_{dR}(X).$$
Deformations of algebroid stacks

3.1. Deformations of linear stacks. Here we describe the notion of 2-groupoid of deformations of an algebroid stack. We follow [2] and refer the reader to that paper for all the proofs and additional details.

For an R-linear category C and homomorphism of algebras $R \rightarrow S$ we denote by $C \otimes_R S$ the category with the same objects as C and morphisms defined by $\text{Hom}_{C \otimes_R S}(A, B) = \text{Hom}_C(A, B) \otimes_R S$.

For a prestack C in R-linear categories we denote by $C \otimes_R S$ the prestack associated to the fibered category $U \mapsto C(U) \otimes_R S$.

Lemma 3.1 ([2], Lemma 4.13). Suppose that A is a sheaf of R-algebras and C is an R-algebroid stack. Then $\tilde{C} \otimes_R S$ is an algebroid stack.

Suppose now that C is a stack in k-linear categories on X and R is a commutative Artin k-algebra. We denote by $\text{Def}(C)(R)$ the 2-category with

- objects: pairs (B, ϖ), where B is a stack in R-linear categories flat over R and $\varpi : \tilde{B} \otimes_R k \rightarrow C$ is an equivalence of stacks in k-linear categories
- 1-morphisms: a 1-morphism $(B^{(1)}, \varpi^{(1)}) \rightarrow (B^{(2)}, \varpi^{(2)})$ is a pair (F, θ) where $F : B^{(1)} \rightarrow B^{(2)}$ is a R-linear functor and $\theta : \varpi^{(2)} \circ (F \otimes_R k) \rightarrow \varpi^{(1)}$ is an isomorphism of functors
- 2-morphisms: a 2-morphism $(F', \theta') \rightarrow (F'', \theta'')$ is a morphism of R-linear functors $\kappa : F' \rightarrow F''$ such that $\theta'' \circ (\text{Id}_{\varpi^{(2)}} \otimes (\kappa \otimes_R k)) = \theta'$

The 2-category $\text{Def}(C)(R)$ is a 2-groupoid.

Let B be a prestack on X in R-linear categories. We say that B is flat if for any $U \subseteq X$, $A, B \in B(U)$ the sheaf $\text{Hom}_B(A, B)$ is flat (as a sheaf of R-modules).

Lemma 3.2 ([2], Lemma 6.2). Suppose that B is a flat R-linear stack on X such that $\tilde{B} \otimes_R k$ is an algebroid stack. Then B is an algebroid stack.

3.2. Deformations of twisted forms of O. Suppose that S is a twisted form of O_X. We will now describe the DGLA controlling the deformations of S.

The complex $\Gamma(X; DR(C^\bullet(J_X))) = (\Gamma(X; A^\bullet_X \otimes C^\bullet(J_X)), \nabla^{can} + \delta)$ is a differential graded brace algebra in a canonical way. The abelian Lie algebra $J_X = C^0(J_X)$ acts on the brace algebra $C^\bullet(J_X)$ by derivations of degree -1 by Gerstenhaber bracket. The above action factors through an action of J_X/O_X. Therefore, the abelian Lie algebra
Γ(\(X; A^2_X \otimes J_X/O_X\)) acts on the brace algebra \(A^•_X \otimes C^•(J_X)\) by derivations of degree +1. Following longstanding tradition, the action of an element \(a\) is denoted by \(ι_a\).

Due to commutativity of \(J_X\), for any \(ω ∈ Γ(\(X; A^2_X \otimes J_X/O_X\))\) the operation \(ι_ω\) commutes with the Hochschild differential \(δ\). If, moreover, \(ω\) satisfies \(∇^\text{can} ω = 0\), then \(∇^\text{can} + δ + i_ω\) is a square-zero derivation of degree one of the brace structure. We refer to the complex

\[
Γ(X; DR (C^•(J_X)) ± := (Γ(X; A^•_X \otimes C^•(J_X)), \nabla^\text{can} + δ + i_ω)
\]

as the \(ω\)-twist of \(Γ(X; DR (C^•(J_X)))\).

Let \(g_{DR}(J)_ω := Γ(X; DR (C^•(J_X)))[1]_ω\) regarded as a DGLA. The following theorem is proved in [2] (Theorem 1 of loc. cit.):

Theorem 3.3. For any Artin algebra \(R\) with maximal ideal \(m_R\) there is an equivalence of 2-groupoids

\[
\text{MC}^2(\mathcal{G}_{DR}(J_X) \otimes m_R) ≅ \text{Def}(S)(R)
\]

natural in \(R\).

4. Formality

We give a synopsis of the results of [5] in the notations of loc. cit. Let \(k\) be a field of characteristic zero. For a \(k\)-cooperad \(C\) and a complex of \(k\)-vector spaces \(V\) we denote by \(F^\text{e}_2(V)\) the cofree \(C\)-coalgebra on \(V\).

We denote by \(e_2\) the operad governing Gerstenhaber algebras. The latter is Koszul, and we denote by \(e_2^\vee\) the dual cooperad.

For an associative \(k\)-algebra \(A\) the Hochschild complex \(C^\bullet(A)\) has a canonical structure of a brace algebra, hence a structure of homotopy \(e_2\)-algebra. The latter structure is encoded in a differential (i.e. a coderivation of degree one and square zero) \(M: F^\text{e}_2^\vee(C^\bullet(A)) → F^\text{e}_2^\vee(C^\bullet(A))[1]\).

Suppose from now on that \(A\) is regular commutative algebra over a field of characteristic zero (the regularity assumption is not needed for the constructions). Let \(V^\bullet(A) = \text{Sym}^\bullet(\text{Der}(A)[-1])\) viewed as a complex with trivial differential. In this capacity \(V^\bullet(A)\) has a canonical structure of an \(e_2\)-algebra which gives rise to the differential \(d_{V^\bullet(A)}\) on \(F^\text{e}_2^\vee(V^\bullet(A))\); we have: \(B^\text{e}_2^\vee(V^\bullet(A)) = (F^\text{e}_2^\vee(V^\bullet(A)), d_{V^\bullet(A)})\) (see [5], Theorem 1 for notations).

In addition, the authors introduce a sub-\(e_2^\vee\)-coalgebra \(Ξ(A)\) of both \(F^\text{e}_2^\vee(C^\bullet(A))\) and \(F^\text{e}_2^\vee(V^\bullet(A))\). We denote by \(σ: Ξ(A) → F^\text{e}_2^\vee(C^\bullet(A))\) and \(ι: Ξ(A) → F^\text{e}_2^\vee(V^\bullet(A))\) respective inclusions and identify \(Ξ(A)\)
with its image under the latter one. By [5], Proposition 7 the differential $d_{V^\bullet(A)}$ preserves $\Xi(A)$; we denote by $d_{V^\bullet(A)}$ its restriction to $\Xi(A)$. By Theorem 3, loc. cit. the inclusion σ is a morphism of complexes. Hence, we have the following diagram in the category of differential graded e_2^\vee-coalgebras:

\[(4.0.1) \quad (\mathbb{F}_{e_2^\vee}(C^\bullet(A)), M) \xrightarrow{\varepsilon} (\Xi(A), d_{V^\bullet(A)}) \xrightarrow{\sigma} (\Xi(A), d_{V^\bullet(A)}) \xrightarrow{i} B_{e_2^\vee}(V^\bullet(A))\]

Applying the functor Ω_{e_2} (adjoint to the functor $B_{e_2^\vee}$, see [5], Theorem 1) to (4.0.1) we obtain the diagram

\[(4.0.2) \quad \Omega_{e_2}(\mathbb{F}_{e_2^\vee}(C^\bullet(A)), M) \xleftarrow{\Omega_{e_2}(\sigma)} \Omega_{e_2}(\Xi(A), d_{V^\bullet(A)}) \xrightarrow{\Omega_{e_2}(i)} \Omega_{e_2}(B_{e_2^\vee}(V^\bullet(A)))\]

of differential graded e_2-algebras. Let $\nu = \eta_{e_2} \circ \Omega_{e_2}(i)$, where $\eta_{e_2} : \Omega_{e_2}(B_{e_2^\vee}(V^\bullet(A))) \to V^\bullet(A)$ is the counit of adjunction. Thus, we have the diagram

\[(4.0.3) \quad \Omega_{e_2}(\mathbb{F}_{e_2^\vee}(C^\bullet(A)), M) \xleftarrow{\Omega_{e_2}(\sigma)} \Omega_{e_2}(\Xi(A), d_{V^\bullet(A)}) \xrightarrow{\nu} V^\bullet(A)\]

of differential graded e_2-algebras.

Theorem 4.1 ([5], Theorem 4). The maps $\Omega_{e_2}(\sigma)$ and ν are quasi-isomorphisms.

Additionally, concerning the DGLA structures relevant to applications to deformation theory, deduced from respective e_2-algebra structures we have the following result.

Theorem 4.2 ([5], Theorem 2). The DGLA $\Omega_{e_2}(\mathbb{F}_{e_2^\vee}(C^\bullet(A)), M)[1]$ and $C^\bullet(A)[1]$ are canonically L_∞-quasi-isomorphic.

Corollary 4.3 (Formality). The DGLA $C^\bullet(A)[1]$ and $V^\bullet(A)[1]$ are L_∞-quasi-isomorphic.

4.1. **Some (super-)symmetries.** For applications to deformation theory of algebroid stacks we will need certain equivariance properties of the maps described in 4.

For $a \in A$ let $i_a : C^\bullet(A) \to C^\bullet(A)[-1]$ denote the adjoint action (in the sense of the Gerstenhaber bracket and the identification $A = C^0(A)$). It is given by the formula

$$i_a D(a_1, \ldots, a_n) = \sum_{i=0}^n (-1)^k D(a_1, \ldots, a_i, a, a_{k+1}, \ldots, a_n).$$

The operation i_a extends uniquely to a coderivation of $\mathbb{F}_{e_2^\vee}(C^\bullet(A))$; we denote this extension by i_a as well. Furthermore, the subcoalgebra $\Xi(A)$ is preserved by i_a.

Since the operation i_a is a derivation of the cup product as well as of all of the brace operations on $C^\bullet(A)$ and the homotopy-e_2-algebra structure on $C^\bullet(A)$ given in terms of the cup product and the brace operations it follows that i_a anti-commutes with the differential M. Hence, the coderivation i_a induces a derivation of the differential graded e_2-algebra $\Omega_{e_2} (\mathcal{F}_{e_2}(C^\bullet(A)), M)$ which will be denoted by i_a as well. For the same reason the DGLA $\Omega_{e_2} (\mathcal{F}_{e_2}(C^\bullet(A)), M)[1]$ and $C^\bullet(A)[1]$ are quasi-isomorphic in a way which commutes with the respective operations i_a.

On the other hand, let $i_a : V^\bullet(A) \rightarrow V^\bullet(A)[-1]$ denote the adjoint action in the sense of the Schouten bracket and the identification $A = V^0(A)$. The operation i_a extends uniquely to a coderivation of the e_2-algebra structure on $V^\bullet(A)$. We denote this coderivation as well as its unique extension to a derivation of the differential graded e_2-algebra $\Omega_{e_2} (\mathcal{B}_{e_2}(V^\bullet(A)))$ by i_a.

The subcoalgebra $\Xi(A)$ of $\mathcal{F}_{e_2}(C^\bullet(A))$ and $\mathcal{F}_{e_2}(V^\bullet(A))$ is preserved by the respective operations i_a. Moreover, the restrictions of the two operations to $\Xi(A)$ coincide, i.e. the maps in (4.0.1) commute with i_a and, therefore, so do the maps in (4.0.2) and (4.0.3).

4.2. Deformations of \mathcal{O} and Kontsevich formality. Suppose that X is a manifold. Let \mathcal{O}_X (respectively, \mathcal{I}_X) denote the structure sheaf (respectively, the sheaf of vector fields). The construction of the diagram localizes on X yielding the diagram of sheaves of differential graded e_2-algebras

\[
\begin{align*}
\Omega_{e_2}(\mathcal{F}_{e_2}(C^\bullet(\mathcal{O}_X)), M) & \xrightarrow{\Omega_{e_2}(\sigma)} \Omega_{e_2}(\Xi(\mathcal{O}_X), d_{V^\bullet(\mathcal{O}_X)}) \\
& \xrightarrow{\nu} V^\bullet(\mathcal{O}_X),
\end{align*}
\]

where $C^\bullet(\mathcal{O}_X)$ denotes the sheaf of multidifferential operators and $V^\bullet(\mathcal{O}_X) := \text{Sym}^\bullet_{\mathcal{O}_X}(\mathcal{I}_X[-1])$ denotes the sheaf of multivector fields. Theorem 4.1 extends easily to this case stating that the morphisms $\Omega_{e_2}(\sigma)$ and ν in (4.2.1) are quasi-isomorphisms of sheaves of differential graded e_2-algebras.

5. Formality for the algebroid Hochschild complex

5.1. A version of [5] for jets. Let $C^\bullet(\mathcal{J}_X)$ denote sheaf of continuous (with respect to the adic topology) \mathcal{O}_X-multilinear Hochschild cochains on \mathcal{J}_X. Let $V^\bullet(\mathcal{J}_X) = \text{Sym}^\bullet_{\mathcal{J}_X}(\text{Der}_{\mathcal{O}_X}^{\text{cont}}(\mathcal{J}_X)[-1])$.

Working now in the category of graded \(\mathcal{O}_X \)-modules we have the diagram
\[(5.1.1) \quad \Omega_{e_2}(F_{e_2}(C^*(J_X)), M) \xleftarrow{\Omega_{e_2}(\sigma)} \Omega_{e_2}(\Xi(J_X), d_{V^*}(J_X)) \xrightarrow{\nu} V^*(J_X)\]
of sheaves of differential graded \(\mathcal{O}_X \)-e_2-algebras. Theorem 4.1 extends easily to this situation: the morphisms \(\Omega_{e_2}(\sigma) \) and \(\nu \) in (5.1.1) are quasi-isomorphisms. The sheaves of DGLA \(\Omega_{e_2}(F_{e_2}(C^*(J_X)), M)[1] \) and \(C^*(J_X)[1] \) are canonically \(L_\infty \)-quasi-isomorphic.

The canonical flat connection \(\nabla^{can} \) on \(J_X \) induces a flat connection which we denote by \(\nabla^{can} \) as well on each of the objects in the diagram (5.1.1). Moreover, the maps \(\Omega_{e_2}(\sigma) \) and \(\nu \) are flat with respect to \(\nabla^{can} \)

due to the maps of respective de Rham complexes
\[(5.1.2) \quad \text{DR}(\Omega_{e_2}(F_{e_2}(C^*(J_X)), M)) \xleftarrow{\text{DR}(\Omega_{e_2}(\sigma))} \text{DR}(\Omega_{e_2}(\Xi(J_X), d_{V^*}(J_X))) \xrightarrow{\text{DR}(\nu)} \text{DR}(V^*(J_X)) \]
where, for \((K^*, d) \) one of the objects in (5.1.1) we denote by \(\text{DR}(K^*, d) \) the total complex of the double complex \((A_X^* \otimes K^*, d, \nabla^{can}) \). All objects in the diagram (5.1.2) have canonical structures of differential graded e_2-algebras and the maps are morphisms thereof.

The DGLA \(\Omega_{e_2}(F_{e_2}(C^*(J_X)), M)[1] \) and \(C^*(J_X)[1] \) are canonically \(L_\infty \)-quasi-isomorphic in a way compatible with \(\nabla^{can} \). Hence, the DGLA \(\text{DR}(\Omega_{e_2}(F_{e_2}(C^*(J_X)), M)[1]) \) and \(\text{DR}(C^*(J_X)[1]) \) are canonically \(L_\infty \)-quasi-isomorphic.

5.2. A version of [5] for jets with a twist. Suppose that \(\omega \in \Gamma(X; A_X^* \otimes J_X/\mathcal{O}_X) \) satisfies \(\nabla^{can}\omega = 0 \).

For each of the objects in (5.1.2) we denote by \(i_\omega \) the operation which is induced by the one described in 4.1 and the wedge product on \(A_X^* \).
Thus, for each differential graded e_2-algebra \((N^*, d) \) in (5.1.2) we have a derivation of degree one and square zero \(i_\omega \) which anticommutes with \(d \) and we denote by \((N^*, d, \omega) \) the \(\omega \)-twist of \((N^*, d) \), i.e. the differential graded e_2-algebra \((N^*, d + i_\omega) \). Since the morphisms in (5.1.2) commute with the respective operations \(i_\omega \), they give rise to morphisms of respective \(\omega \)-twists
\[(5.2.1) \quad \text{DR}(\Omega_{e_2}(F_{e_2}(C^*(J_X)), M))_\omega \xleftarrow{\text{DR}(\Omega_{e_2}(\sigma))} \text{DR}(\Omega_{e_2}(\Xi(J_X), d_{V^*}(J_X)))_\omega \xrightarrow{\text{DR}(\nu)} \text{DR}(V^*(J_X))_\omega \]

Let \(F_*A_X^* \) denote the stupid filtration: \(F_iA_X^* = A_X^{\geq -i} \). The filtration \(F_*A_X^* \) induces a filtration denoted \(F_i\text{DR}(K^*, d)_\omega \) for each object \((K^*, d) \).
of (5.1.1) defined by \(F_i \mathcal{D}R(K^\bullet, d) = F_i \mathcal{A}_X^\bullet \otimes K^\bullet \). As is easy to see, the associated graded complex is given by
\[
Gr_{−p} \mathcal{D}R(K^\bullet, d)_\omega = (\mathcal{A}_X^p \otimes K^\bullet, \text{Id} \otimes d).
\]

It is clear that the morphisms \(\mathcal{D}R(\Omega_{e_2}(\sigma)) \) and \(\mathcal{D}R(\nu) \) are filtered with respect to \(F_i \).

Theorem 5.1. The morphisms in (5.2.1) are filtered quasi-isomorphisms, i.e. the maps \(Gr_{−p} \mathcal{D}R(\Omega_{e_2}(\sigma)) \) and \(Gr_{−p} \mathcal{D}R(\nu) \) are quasi-isomorphisms for all \(i \in \mathbb{Z} \).

Proof. We consider the case of \(\mathcal{D}R(\Omega_{e_2}(\sigma)) \) leaving \(Gr_{−p} \mathcal{D}R(\nu) \) to the reader.

The map \(Gr_{−p} \mathcal{D}R(\Omega_{e_2}(\sigma)) \) induced by \(\mathcal{D}R(\Omega_{e_2}(\sigma)) \) on the respective associated graded objects in degree \(−p \) is equal to the map of complexes
\[
\text{Id} \otimes \Omega_{e_2}(\sigma): \mathcal{A}_X^p \otimes \Omega_{e_2}(\ell_i(\mathcal{J}_X), d_{i^*}(\mathcal{J}_X)) \to \mathcal{A}_X^p \otimes \Omega_{e_2}(C^*(\mathcal{J}_X)), M).
\]

The map \(\sigma \) is a quasi-isomorphism by Theorem 4.1, therefore so is \(\Omega_{e_2}(\sigma) \). Since \(\mathcal{A}_X^p \) is flat over \(\mathcal{O}_X \), the map (5.2.3) is a quasi-isomorphism. \(\square \)

Corollary 5.2. The maps \(\mathcal{D}R(\Omega_{e_2}(\sigma)) \) and \(\mathcal{D}R(\nu) \) in (5.2.1) are quasi-isomorphisms of sheaves of differential graded \(e_2 \)-algebras.

Additionally, the DGLA \(\mathcal{D}R(\Omega_{e_2}(\mathbb{F}_{e_2}(C^*(\mathcal{J}_X)), M)[1]) \) and \(\mathcal{D}R(C^*(\mathcal{J}_X))[1] \) are canonically \(L_\infty \)-quasi-isomorphic in a way which commutes with the respective operations \(i_\omega \) which implies that the respective \(\omega \)-twists \(\mathcal{D}R(\Omega_{e_2}(\mathbb{F}_{e_2}(C^*(\mathcal{J}_X)), M)[1])_\omega \) and \(\mathcal{D}R(C^*(\mathcal{J}_X))[1])_\omega \) are canonically \(L_\infty \)-quasi-isomorphic.

5.3. \(L_\infty \)-structures on multivectors. The canonical pairing \(\langle \ , \rangle : \mathcal{A}_X^1 \otimes \mathcal{T}_X \to \mathcal{O}_X \) extends to the pairing
\[
\langle \ , \rangle : \mathcal{A}_X^1 \otimes V^\bullet(\mathcal{O}_X) \to V^\bullet(\mathcal{O}_X)[−1]
\]

For \(k \geq 1, \omega = \alpha_1 \wedge \ldots \wedge \alpha_k, \alpha_i \in \mathcal{A}_X^1, i = 1, \ldots, k \), let
\[
\Phi(\omega): \text{Sym}^k V^\bullet(\mathcal{O}_X)[2] \to V^\bullet(\mathcal{O}_X)[k]
\]
denote the map given by the formula
\[
\Phi(\omega)(\pi_1, \ldots, \pi_k) = (-1)^{(k−1)|\pi_1|−1+\ldots+2|\pi_{k−3}|−1+|\pi_{k−2}|−1)} \sum_{\sigma} \text{sgn}(\sigma) \langle \alpha_1, \pi_{\sigma(1)} \rangle \wedge \cdots \wedge \langle \alpha_k, \pi_{\sigma(k)} \rangle,
\]

where \(|\pi| = l \) for \(\pi \in V^l(\mathcal{O}_X) \). For \(\alpha \in \mathcal{O}_X \) let \(\Phi(\alpha) = \alpha \in V^0(\mathcal{O}_X) \).
Recall that a graded vector space W gives rise to the graded Lie algebra $\text{Der}(\text{coComm}(W[1]))$. An element $\gamma \in \text{Der}(\text{coComm}(W[1]))$ of degree one which satisfies $[\gamma, \gamma] = 0$ defines a structure of an L_∞-algebra on W. Such a γ determines a differential $\partial_\gamma := [\gamma, \cdot]$ on $\text{Der}(\text{coComm}(W[1]))$, such that $(\text{Der}(\text{coComm}(W[1])), \partial_\gamma)$ is a differential graded Lie algebra. If g is a graded Lie algebra and γ is the element of $\text{Der}(\text{coComm}(g[1]))$ corresponding to the bracket on g, then $(\text{Der}(\text{coComm}(g[1])), \partial_\gamma)$ is equal to the shifted Chevalley cochain complex $C^\bullet(g; g)[1]$.

In what follows we consider the (shifted) de Rham complex $A^\bullet_X[2]$ as a differential graded Lie algebra with the trivial bracket.

Lemma 5.3. The map $\omega \mapsto \Phi(\omega)$ defines a morphism of sheaves of differential graded Lie algebras

\[(5.3.1) \quad \Phi: A^\bullet_X[2] \to C^\bullet(V^\bullet(O_X)[1]; V^\bullet(O_X)[1])[1].\]

Proof. Recall the explicit formulas for the Schouten bracket. If f and g are functions and X_1, Y_1 are vector fields, then

\[
[fX_1 \ldots X_k, gY_1 \ldots Y_l] = \sum_i (-1)^{k-i} fX_k(g)X_1 \ldots \widehat{X}_i \ldots X_k Y_1 \ldots Y_l + \\
\sum_j (-1)^j gY_j(f)X_1 \ldots X_k Y_1 \ldots \widehat{Y}_j \ldots Y_l + \\
\sum_{i,j} (-1)^{i+j} f gX_1 \ldots \widehat{X}_i \ldots X_k Y_1 \ldots \widehat{Y}_j \ldots Y_l
\]

Note that for a one-form ω and for vector fields X and Y

\[(5.3.2) \quad \langle \omega, [X, Y] \rangle - \langle [\omega, X], Y \rangle - \langle X, [\omega, Y] \rangle = \Phi(d\omega)(X, Y)\]

From the two formulas above we deduce by an explicit computation that

\[
\langle \omega, [\pi, \rho] \rangle - \langle [\omega, \pi], \rho \rangle - (-1)^{|\pi|-1} \langle \pi, [\omega, \rho] \rangle = (-1)^{|\pi|-1} \Phi(d\omega)(\pi, \rho)
\]

Note that Lie algebra cochains are invariant under the symmetric group acting by permutations multiplied by signs that are computed by the following rule: a permutation of π_i and π_j contributes a factor $(-1)^{|\pi_i||\pi_j|}$. We use the explicit formula for the bracket on the Lie algebra complex.

\[
[\Phi, \Psi] = \Phi \circ \Psi - (-1)^{|\Phi||\Psi|} \Psi \circ \Phi
\]

\[(\Phi \circ \Psi)(\pi_1, \ldots, \pi_{k+l-1}) = \sum_{I, J} \epsilon(I, J) \Phi(\Psi(\pi_{j_1}, \ldots, \pi_{i_k}), \pi_{j_1}, \ldots, \pi_{j_{l-1}})\]
Here \(I = \{ i_1, \ldots, i_k \}; \; J = \{ j_1, \ldots, j_{l-1} \}; \; i_1 < \ldots < i_k; \; j_1 < \ldots < j_{l-1}; \; I \coprod J = \{ 1, \ldots, k + l - 1 \}; \) the sign \(\epsilon (I, J) \) is computed by the same sign rule as above. The differential is given by the formula

\[
\partial \Phi = [m, \Phi]
\]

where \(m(\pi, \rho) = (-1)^{|\pi|-1}[\pi, \rho] \). Let \(\alpha = \alpha_1 \ldots \alpha_k \) and \(\beta = \beta_1 \ldots \beta_l \). We see from the above that both cochains \(\Phi(\alpha) \circ \Phi(\beta) \) and \(\Phi(\beta) \circ \Phi(\alpha) \) are antisymmetrizations with respect to \(\alpha \) and \(\beta \).

\[
\sum_{I,J,p} \pm \langle \alpha_1 \beta_1, \pi_p \rangle \langle \alpha_2, \pi_{i_1} \rangle \cdots \langle \alpha_k, \pi_{i_{k-1}} \rangle \langle \beta_2, \pi_{j_1} \rangle \cdots \langle \beta_l, \pi_{j_{l-1}} \rangle
\]

over all partitions \(\{ 1, \ldots, k + l - 1 \} = I \coprod J \coprod \{ p \} \) where \(i_1 < \ldots < i_{k-1} \) and \(j_1 < \ldots < j_{l-1} \); hence \(\langle \alpha \beta, \pi \rangle = \langle \alpha, \beta, \pi \rangle \). After checking the signs, we conclude that \([\Phi(\alpha), \Phi(\beta)] = 0 \). Also, from the definition of the differential, we see that \(\partial \Phi(\alpha)(\pi_1, \ldots, \pi_{k+1}) \) is the antisymmetrizations with respect to \(\alpha \) and \(\beta \) of the sum

\[
\sum_{i<j} \pm (\langle \alpha_1, [\pi_i, \pi_j] \rangle - \langle [\alpha_1, \pi_i], \pi_j \rangle - (-1)^{|\pi_i|-1}[\pi_i, \langle \alpha_1, \pi_j \rangle])
\]

\[
= \langle \alpha_2, \pi_1 \rangle \cdots \langle \alpha_i, \pi_{i-1} \rangle \langle \alpha_{i+1}, \pi_{i+1} \rangle \cdots \langle \alpha_{j-1}, \pi_{j-1} \rangle \langle \alpha_j, \pi_{j+1} \rangle \langle \alpha_k, \pi_{k+1} \rangle
\]

We conclude from this and (5.3.2) that \(\partial \Phi(\alpha) = \Phi(\delta \alpha) \). \(\square \)

Thus, according to Lemma 5.3, a closed 3-form \(H \) on \(X \) gives rise to a Maurer-Cartan element \(\Phi(H) \) in \(\Gamma(X; C^\bullet(V^\bullet(O_X)[1]; V^\bullet(O_X)[1])[1]) \), hence a structure of an \(L^\infty \)-algebra on \(V^\bullet(O_X)[1] \) which has the trivial differential (the unary operation), the binary operation equal to the Schouten-Nijenhuis bracket, the ternary operation given by \(\Phi(H) \), and all higher operations equal to zero. Moreover, cohomologous closed 3-forms give rise to gauge equivalent Maurer-Cartan elements, hence to \(L^\infty \)-isomorphic \(L^\infty \)-structures.

Notation. For a closed 3-form \(H \) on \(X \) we denote the corresponding \(L^\infty \)-algebra structure on \(V^\bullet(O_X)[1] \) by \(V^\bullet(O_X)[1]_H \). Let

\[
s(O_X)_H := \Gamma(X; V^\bullet(O_X)[1])_H.
\]

5.4. \(L^\infty \)-structures on multivectors via formal geometry. In order to relate the results of 5.2 with those of 5.3 we consider the analog of the latter for jets.

Let \(\hat{\Omega}^k_{J/O} := \mathcal{J}X(\mathcal{A}^k_X) \), the sheaf of jets of differential \(k \)-forms on \(X \). Let \(\hat{d}_R \) denote the \((\mathcal{O}_X\text{-linear}) \) differential in \(\hat{\Omega}^k_{J/O} \) induced by the de Rham differential in \(\mathcal{A}^k_X \). The differential \(\hat{d}_R \) is horizontal with respect to the canonical flat connection \(\nabla^\text{can} \) on \(\hat{\Omega}^k_{J/O} \), hence we have
the double complex \((\mathcal{A}_X^\bullet \otimes \hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}}, \nabla^{can}, \text{Id} \otimes \hat{d}_R)\) whose total complex is denoted \(\text{DR}(\hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}})\).

Let \(\Phi : \mathcal{O}_X \to \mathcal{J}_X\) denote the unit map (not to be confused with the map \(j^\infty\)); it is an isomorphism onto the kernel of \(\hat{d}_R : \mathcal{J}_X \to \hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}}\) and therefore defines the morphism of complexes \(\Phi : \text{DR}(\mathcal{J}_X) \to \text{DR}(\hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}})\) which is a quasi-isomorphism. The map \(\Phi\) is horizontal with respect to the canonical flat connections on \(\mathcal{O}_X\) and \(\mathcal{J}_X\) (respectively, \(\hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}}\)), therefore we have the induced map of respective de Rham complexes \(\text{DR}(\Phi) : \mathcal{A}_X^\bullet \to \text{DR}(\mathcal{J}_X)\) (respectively, \(\text{DR}(1) : \mathcal{A}_X^\bullet \to \text{DR}(\hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}})\), a quasi-isomorphism).

Let \(C^\bullet(g(\mathcal{J}_X); g(\mathcal{J}_X))\) denote the complex of continuous \(\mathcal{O}_X\)-multilinear cochains. The map of differential graded Lie algebras

\[
\hat{\Phi} : \hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}}[2] \to C^\bullet(V^\bullet(\mathcal{J}_X)[1]; V^\bullet(\mathcal{J}_X)[1])[1]
\]

defined in the same way as (5.3.1) is horizontal with respect to the canonical flat connection \(\nabla^{can}\) and induces the map

\[
\text{DR}(\hat{\Phi}) : \text{DR}(\hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}})[2] \to \text{DR}(C^\bullet(V^\bullet(\mathcal{J}_X)[1]; V^\bullet(\mathcal{J}_X)[1])[1])
\]

There is a canonical morphism of sheaves of differential graded Lie algebras

\[
\text{DR}(C^\bullet(V^\bullet(\mathcal{J}_X)[1]; V^\bullet(\mathcal{J}_X)[1])[1]) \to C^\bullet(\text{DR}(V^\bullet(\mathcal{J}_X)[1])); \text{DR}(V^\bullet(\mathcal{J}_X)[1]))[1]
\]

There is a canonical morphism of sheaves of differential graded Lie algebras

\[
\text{DR}(\mathcal{A}_X^\bullet \otimes \mathcal{J}_X) \to \text{DR}(\hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}})\]

Therefore, a degree three cocycle in \(\Gamma(X; \mathcal{A}_X^3 \otimes \mathcal{J}_X)\) determines an \(L_\infty\)-structure on \(\text{DR}(V^\bullet(\mathcal{J}_X)[1])\) and cohomologous cocycles determine \(L_\infty\)-isomorphic structures.

Notation. For a section \(B \in \Gamma(X; \mathcal{A}_X^3 \otimes \mathcal{J}_X)\) we denote by \(\overline{B}\) its image in \(\Gamma(X; \mathcal{A}_X^3 \otimes \mathcal{J}_X/\mathcal{O}_X)\).

Lemma 5.4. If \(B \in \Gamma(X; \mathcal{A}_X^3 \otimes \mathcal{J}_X)\) satisfies \(\nabla^{can}\overline{B} = 0\), then

1. \(\hat{d}_R B\) is a (degree three) cocycle in \(\Gamma(X; \hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}})\);
2. there exist a unique \(H \in \Gamma(X; \mathcal{A}_X^3)\) such that \(dH = 0\) and \(\text{DR}(1)(H) = \nabla^{can}B\).

Proof. For the first claim it suffices to show that \(\nabla^{can}B = 0\). This follows from the assumption that \(\nabla^{can}\overline{B} = 0\) and the fact that \(\hat{d}_R : \mathcal{A}_X^\bullet \otimes \mathcal{J}_X \to \mathcal{A}_X^\bullet \otimes \hat{\mathcal{O}}_{\mathcal{J}/\mathcal{O}}\) factors through \(\mathcal{A}_X^\bullet \otimes \mathcal{J}_X/\mathcal{O}_X\).

We have: \(\hat{d}_R \nabla^{can}B = \nabla^{can}\hat{d}_R B = 0\). Therefore, \(\nabla^{can}B\) is in the image of \(\text{DR}(1) : \Gamma(X; \mathcal{A}_X^3) \to \Gamma(X; \mathcal{A}_X^3 \otimes \mathcal{J}_X)\) which is injective, whence the existence and uniqueness of \(H\). Since \(\text{DR}(1)\) is a morphism of complexes it follows that \(H\) is closed. \(\square\)
Suppose that $B \in \Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X)$ satisfies $\nabla^{can} B = 0$. Then, the differential graded Lie algebra $\text{DR}(\mathfrak{g}(\mathcal{J}_X)/\mathcal{P})$ (the \mathcal{P}-twist of $\text{DR}(\mathfrak{g}(\mathcal{J}_X))$) is defined. On the other hand, due to Lemma 5.4, (5.4.2) and (5.4.3), $\hat{\partial}_H B$ gives rise to an L_∞-structure on $\text{DR}(V^\bullet(\mathcal{J}_X)[1])$.

Lemma 5.5. The L_∞-structure induced by $\hat{\partial}_H B$ is that of a differential graded Lie algebra equal to $\text{DR}(V^\bullet(\mathcal{J}_X)[1])_{\mathcal{P}}$.

Proof. Left to the reader. \square

Notation. For a 3-cocycle $\omega \in \Gamma(X; \text{DR}(\hat{\Omega}^\bullet_{\mathcal{J}/\mathcal{O}}))$ we will denote by $\text{DR}(V^\bullet(\mathcal{J}_X)[1])_\omega$ the L_∞-algebra obtained from ω via (5.4.2) and (5.4.3). Let

$$s(\mathcal{O}_X)_H := \Gamma(X; \text{DR}(V^\bullet(\mathcal{J}_X)[1])_{\mathcal{P}}).$$

Remark 5.6. Lemma 5.5 shows that this notation is unambiguous with reference to the previously introduced notation for the twist. In the notations introduced above, $\hat{\partial}_H B$ is the image of B under the injective map $\Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X/\mathcal{O}_X) \to \Gamma(X; \mathcal{A}_X^2 \otimes \hat{\Omega}^1_{\mathcal{J}/\mathcal{O}})$ which factors $\hat{\partial}_H$ and “allows” us to “identify” B with $\hat{\partial}_H B$.

Theorem 5.7. Suppose that $B \in \Gamma(X; \mathcal{A}_X^2 \otimes \mathcal{J}_X)$ satisfies $\nabla^{can} B = 0$. Let $H \in \Gamma(X; \mathcal{A}_X^3)$ denote the unique 3-form such that $\text{DR}(1\langle H \rangle) = \nabla^{can} B$ (cf. Lemma 5.4). Then, the L_∞-algebras $\mathfrak{g}(\mathcal{J}_X)/\mathcal{P}$ and $s(\mathcal{O}_X)_H$ are L_∞-quasi-isomorphic.

Proof. The map $j^\infty: V^\bullet(\mathcal{O}_X) \to V^\bullet(\mathcal{J}_X)$ induces a quasi-isomorphism of sheaves of DGLA

$$j^\infty: V^\bullet(\mathcal{O}_X)[1] \to \text{DR}(V^\bullet(\mathcal{J}_X)[1]).$$

Suppose that H is a closed 3-form on X. Then, the map (5.4.4) is a quasi-isomorphism of sheaves of L_∞-algebras

$$j^\infty: V^\bullet(\mathcal{O}_X)[1]_H \to \text{DR}(V^\bullet(\mathcal{J}_X)[1]_{\text{DR}(1\langle H \rangle)}).$$

Passing to global section we obtain the quasi-isomorphism of L_∞-algebras

$$j^\infty: s(\mathcal{O}_X)_H \to s(\mathcal{J}_X)_{\text{DR}(1\langle H \rangle)}.$$ (5.4.5)

By assumption, B provides a homology between $\hat{\partial}_H B$ and $\nabla^{can} B = \text{DR}(1\langle H \rangle)$. Therefore, we have the corresponding L_∞-quasi-isomorphism

$$\text{DR}(V^\bullet(\mathcal{J}_X)[1]_{\text{DR}(1\langle H \rangle)}) \cong \text{DR}(V^\bullet(\mathcal{J}_X)[1])_{\partial_H B} = \text{DR}(V^\bullet(\mathcal{J}_X)[1]_{\mathcal{P}})$$

(the second equality is due to Lemma 5.5).
According to Corollary 5.2 the sheaf of DGLA $\mathcal{D}R(V^\bullet(J_X)[1])$ is L_∞-quasi-isomorphic to the DGLA deduced from the differential graded algebra $\mathcal{D}R(\Omega_{e_2}(\mathcal{E}_{e_2}(C^\bullet(J_X)), M))$. The latter DGLA is L_∞-quasi-isomorphic to $\mathcal{D}R(C^\bullet(J_X)[1])$.

Passing to global sections we conclude that $s_{\mathcal{D}R}(J_X)_{\mathcal{D}R}(1)$ and $g_{\mathcal{D}R}(J_X)_{\mathcal{D}R}$ are L_∞-quasi-isomorphic. Together with (5.4.5) this implies the claim.

6. Application to deformation theory

Theorem 6.1. Suppose that S is a twisted form of \mathcal{O}_X (2.5). Let H be a closed 3-form on X which represents $[S]_{dR} \in H^3_{dR}(X)$. For any Artin algebra R with maximal ideal m_R there is an equivalence of 2-groupoids

$$MC^2(s(\mathcal{O}_X)_{H} \otimes m_R) \cong Def(S)(R)$$

natural in R.

Proof. Since cohomologous 3-forms give rise to L_∞-quasi-isomorphic L_∞-algebras we may assume, possibly replacing H by another representative of $[S]_{dR}$, that there exists $B \in \Gamma(X; A^2_X \otimes J_X)$ such that \overline{B} represents $[S]$ and $\nabla^{can}B = \mathcal{D}R(1)(H)$. By Theorem 5.7 $s(\mathcal{O}_X)_{H}$ is L_∞-quasi-isomorphic to $g_{\mathcal{D}R}(J_X)_{\mathcal{D}R}$. By the Theorem 2.1 we have a homotopy equivalence of nerves of 2-groupoids $\gamma_{\bullet}(s(\mathcal{O}_X)_{H} \otimes m_R) \cong \gamma_{\bullet}(g_{\mathcal{D}R}(J_X)_{\mathcal{D}R} \otimes m_R)$. Therefore, there are equivalences

$$MC^2(s(\mathcal{O}_X)_{H} \otimes m_R) \cong MC^2(g_{\mathcal{D}R}(J_X)_{\mathcal{D}R} \otimes m_R) \cong Def(S)(R),$$

the second one being that of Theorem 3.3.

Remark 6.2. In particular, the isomorphism classes of formal deformations of S are in a bijective correspondence with equivalence classes of Maurer-Cartan elements of the L_∞-algebra $s_{\mathcal{D}R}(\mathcal{O}_X)_{H} \hat{\otimes} t \cdot \mathbb{C}[t]$. These are the formal twisted Poisson structures in the terminology of [13], i.e. the formal series $\pi = \sum_{k=1}^{\infty} i^k \pi_k$, $\pi_k \in \Gamma(X; \wedge^2 T_X)$, satisfying the equation

$$[\pi, \pi] = \Phi(H)(\pi, \pi, \pi).$$

A construction of an algebroid stack associated to a twisted Poisson structure was proposed by P. Ševera in [12].

References

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: paul.bressler@gmail.com

Department of Mathematics, UCB 395, University of Colorado, Boulder, CO 80309-0395, USA
E-mail address: Alexander.Gorokhovsky@colorado.edu

Department of Mathematics, Copenhagen University, Universitetsparken 5, 2100 Copenhagen, Denmark
E-mail address: rnest@math.ku.dk

Department of Mathematics, Northwestern University, Evanston, IL 60208-2730, USA
E-mail address: tsygan@math.northwestern.edu