Written Description	Sliced Model	Smooth Model	Integral for the Volume
The base is a circle of ra-			
dius 2 centered about the			
origin. The cross sections			
perpendicular to the x -			
axis are squares.			
The base is a circle of ra-			
dius 2 centered about the			
origin. The cross sections			
perpendicular to the $x-$			
axis are equilateral trian-			
gles.			

$V=\int_{-1}^{1}\left(2 \sqrt{2-x^{2}}\right)^{2} d x$	$V=\int_{-1}^{1}\left(2 \sqrt{2-x^{2}}\right)^{2} d x$	$V=\int_{-1}^{1}\left(2 \sqrt{2-x^{2}}\right)^{2} d x$
$V=\int_{0}^{1} 2\left(\sqrt{2-x^{2}}\right)^{2} d x$	$V=\int_{0}^{1} 2\left(\sqrt{2-x^{2}}\right)^{2} d x$	$V=\int_{0}^{1} 2\left(\sqrt{2-x^{2}}\right)^{2} d x$
$V=\int_{0}^{2} 2 x^{2} d x$	$V=\int_{0}^{2} 2 x^{2} d x$	$V=\int_{0}^{2} 2 x^{2} d x$
$V=\int_{-\sqrt{3}}^{\sqrt{3}} 4 x^{4} d x$	$V=\int_{-\sqrt{3}}^{\sqrt{3}} 4 x^{4} d x$	$V=\int_{-\sqrt{3}}^{\sqrt{3}} 4 x^{4} d x$
$V=\int_{0}^{\sqrt{3}} 4 x^{4} d x$	$V=\int_{0}^{\sqrt{3}} 4 x^{4} d x$	$V=\int_{0}^{\sqrt{3}} 4 x^{4} d x$

