Name: \qquad ANSWER KEY

Score: \qquad

1. Let $f(x)$ be a continuous function. The graph of its derivative, $f^{\prime}(x)$, is shown below.

(a) (2 points) What are the critical points of f ? Explain.

The critical numbers of f are the values of x where $f^{\prime}(x)=0$ or is undefined. The critical points are $x=1,3,4,5$.
(b) (1 point) Where does f have local minima? Explain.

By the first derivative test, since f^{\prime} goes from negative to positive at $x=1$ and $x=5, f$ has local minima at $x=1$ and $x=5$.
(c) (1 point) Where does f have local maxima? Explain.

By the first derivative test, since f^{\prime} goes from positive to negative at $x=4, f$ has a local maximum at $x=4$.
(d) (2 point) Where does f have inflection points? Explain.

The points where f^{\prime} goes from increasing to decreasing or from decreasing to increasing are inflection points. The inflection points of f are at $x=1.7$ and $x=3$.
(e) (1 point) Is $f(1)$ larger than, smaller than, or equal to $f(3)$? Explain.

Since $f^{\prime}(x)$ is positive on $(1,3), f$ must be increasing between $x=1$ and $x=3$. Thus $f(3)>f(1)$.
2. (3 points) Suppose that we know that $f(x)$ is continuous and differentiable everywhere. Also suppose that $f(x)$ has two roots. Prove that $f^{\prime}(x)$ must have at least one root.
[Hint: Use the Mean Value Theorem.]
Since $f(x)$ has two roots, we know that there exist values a and b such that $f(a)=0$ and $f(b)=0$. The slope of the secant line between $x=a$ and $x=b$ is

$$
\frac{f(b)-f(a)}{b-a}=\frac{0}{b-a}=0
$$

We know f is continuous and differentiable, so we may use the Mean Value Theorem. According to the MVT, there exists an x-value c between a and b such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

But we already calculated that $\frac{f(b)-f(a)}{b-a}=0$, so $f^{\prime}(c)=0$. This means $f^{\prime}(x)$ has at least one root at $x=c$.

