Monday, August. 24, 2020
Class philosophy: High expectations, high support
Norms: camera on I will call on you. Lots of collaboration always open to negotiation. within reason.

Grading scheme: Exams Quizzes (every 2 weeks)	65%	
	10%	
Quizzes Check-ins (Tues $\left.+F_{\text {ri }}\right)$	10%	
WebAssign		10%
Written HW	5%	
Projects		

Drop policy is very generous. Details on syllabus on Piazza.
Technology

- OneNote Your cuid comes with access
- Piazza Main source of class communication

Anonymous posing!
Ask questions any time and answer peers' questions. Go answer question about tablet as "attendance"

- Mathemaitica Install tonight

Communicating mathematics well is an important part of doing mathematics. As you write up your homework solutions, keep these things in mind:

- Write in sentences.

Complete thoughts are sentences that end in periods. You may still highlight important equations by displaying them, but even displayed equations should have punctuation!
Use paragraphs to separate important ideas.

- Use helpful connective phrases.
"If", "then", "so", "therefore", "we see that", "recall that", ...
- Your audience is other students in the class who have not seen this problem before.

Remind the reader of any relevant facts from class or the book. Your solution should give adequate detail so that the reader can follow your solution.

- It is possible to write too much!

If you write out every triviality, the reader may get lost in the details. This is not good writing, either. (In particular, really trivial calculations need not be shown.)

- Avoid shorthand.

Don't use arrows, and write out 'for all', 'there exists'.

- You may wish to outline your problem-solving strategy at the beginning of the problem.

Example. Here are two different solutions to the same problem. Which one is easier to understand?

$$
\begin{gathered}
(0-3)^{2}+(x-2)^{2}=25 \\
3^{2}=9+\left(x^{2}-4 x+4\right)=25 \\
x^{2}-4 x-12 \\
(x-6)(x+2) \Longrightarrow x=-2,6 \quad x>0 \quad x=6
\end{gathered}
$$

WHY THIS IS POORLY WRITTEN:

- You don't know what problem the writer was solving.
- You can't tell what's an assumption and what's a conclusion.
- Where does one thought end and another begin? There are no sentences!
- In the 2nd line: combining two thoughts can create untruths (3^{2} is 9 but it isn't 25).
- The 3rd line dangles; what's being asserted here? It's not a sentence.
- What's the relationship between all these phrases? Connective phrases would help!

Problem. Find a point in the plane on the positive x-axis that has distance 5 from the point $(2,3)$.
Solution. The desired point is $(6,0)$.
To find this, we note if $(x, 0)$ is a solution, then x must must satisfy the equation $(x-2)^{2}+(0-3)^{2}=$ 25 , which follows from the planar distance formula between the points $(x, 0)$ and (2,3). It follows that $x^{2}-4 x+13=25$. Then

$$
x^{2}-4 x-12=0 .
$$

Factoring, we obtain

$$
(x-6)(x+2)=0,
$$

satisfied by either $x=-2$ or $x=6$. Since we assumed $x>0$ and $y=0$, we see $(6,0)$ is the desired point.
WHY THIS IS WELL-WRITTEN:

- The writer described the problem, and strategy for solution.
- Every thought is a complete sentence with subject and verb (the "equals" sign is a verb).
- She answered the question right at the beginning. (Boxing answers is customary.)
- Notice even the equations have punctuation (comma, periods) as they are part of sentences.
- She highlighted important ingredients, displayed important equations, avoided trivial algebra.

Writing well will benefit you, too! It helps you structure your own thinking, and you will thank yourself when you re-read your solutions later.
9.1. Three dimensional coordinate systems.
\mathbb{R} is the symbol for real numbers, ie numbers without i.
\mathbb{R}^{\prime} is the real line.

\mathbb{R}^{2} is the $x y$-plane.

\mathbb{R}^{3} is $x y z$-space, or 3 -space (Note: always use right-hand rule in this class).

ex.) Draw $x y$-plane (same as $z=0$)

Pay attn to how to draw grid!
ex) Plot $(2,3,1)$ and its projections on the $x y$-plane, the $y z$-plane, and the x-axis

Right-hand rule
or
Left-haind rule?

Wednesday, August 25
9.2 Vectors
A. vector is a mathematical object with magnitude and direction
(Note: The zero vector has magnitude 0 and no direction)
Notation: \vec{U}, \vec{v}. or u, v

$$
\vec{U}=\langle 7,-7,4\rangle \quad \text { components or } \quad 7 \vec{\imath}-7 \vec{\jmath}+4 \vec{k}
$$

Graph:

Meaning: velocity, force, displacement, and more!

Algebra with vectors

Intuition

Geometrically

"Triangle Rule"

$$
\begin{aligned}
& \vec{v}=\langle 2,1\rangle \\
& 3 \vec{v}=\langle 6,3\rangle
\end{aligned}
$$

Algebraically

$$
\begin{aligned}
& \vec{a}=\langle 1,2\rangle, \vec{b}=\langle 3,1\rangle \\
& \vec{a}+\vec{b}=\langle 4,3\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \vec{u}=\langle-2,3\rangle, \quad \vec{v}=\langle-2,1\rangle \\
& \vec{u}-\vec{v}=\langle 0,2\rangle
\end{aligned}
$$

The magnitude or norm of a vector $\vec{v}=\langle a, b, c\rangle$ is denoted $|\vec{v}|$ The magnitude is computed via $|\vec{v}|=\sqrt{a^{2}+b^{2}+c^{2}}$.

A unit vector is a vector with magnitude 1
To scale up/down any vector \vec{v}, into a unit vector with the direction as \vec{v}, take \vec{V} and divide by $|\vec{v}|$,

Friday, August 27.

Reminders

- WebAssign 9.3
-HW2 sec 9,3, \#42,44, A1, A2, A3 (submit for feedback in OneNote notebook, if desired)
- Proctorio check and all WebAssign to 9.3 due Sun
- Reading / Video assignment due Mon (cross .product)
- (for yourself) Finish Worksheet 9.2, 9.3
9.3 Dot product

Motivation: What is the projection of \vec{b} onto \vec{a} ?
ex.) Draw the projection of \vec{b} onto \vec{a}

Consider (1) What is the magnitude of each projection?
(2) When is $\operatorname{proj}_{\vec{a}} \vec{b}=\overrightarrow{0}$?
(3) What are some real-life examples of projections?

The dot product of vectors \vec{a} and \vec{b}, is written $\vec{a} \cdot \vec{b}$ and can be computed as either
(i) $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$ for $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle \quad$ OR
(ii) $\vec{a}: \vec{b}=|\stackrel{\rightharpoonup}{a}||\vec{b}| \cos \theta$ where θ is the angle between \vec{a} and \vec{b}.

Properties. The dot product takes two vectors and gives a scalar.

- Vectors \vec{a} and \vec{b} are orthogonal if and only if. $\vec{a}: \vec{b}=0$
- $\vec{a} \cdot \vec{a}=|\vec{a}|^{2}$

Back to projections

$$
\begin{aligned}
& \operatorname{proj}_{\vec{a}} \stackrel{\rightharpoonup}{b}=\frac{\stackrel{\rightharpoonup}{a}}{|\stackrel{\rightharpoonup}{a}|^{2}}(\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{b})=\frac{\stackrel{\rightharpoonup}{a}}{|\stackrel{\rightharpoonup}{a}|}\left(\frac{\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{b}}{|\stackrel{\rightharpoonup}{a}|}\right) \\
& \operatorname{comp}_{\vec{a}} \stackrel{\rightharpoonup}{b}=\frac{\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{b}}{|\stackrel{\rightharpoonup}{a}|}=|\stackrel{\rightharpoonup}{b}| \cos \theta
\end{aligned}
$$

vector! (the actual projection)
scalar! (just the length and sign of the projection)

Monday August 31
Reminders
Quiz 1 tomorrow night (no check-in tomorrow)
Do WebAssign 9.4
Do. HW 2, section 9.4 \#26, 32, 35 for feedback
(Do homework on time, with academic integrity)
9.4 Cross product

Let $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, be vectors in \mathbb{R}^{3} The cross product of \vec{a} and \vec{b}, denoted $\vec{a} \times \vec{b}$, is given by

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{b} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{k}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{3} & b_{3}
\end{array}\right| \vec{\jmath}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k}
$$

Properties (aka the best tricks)
(i) Cross product gives a vector.
(ii) $\vec{a} \times \vec{b}$ is orthogonal. to both \vec{a} and \vec{b}
(iii) The direction of $\vec{a} \times \vec{b}$ is determined by the right -hand rule
(iv) $|\vec{a} \times \vec{b}|$ is a scalar that represents the area of the parallelogram with sides \vec{a} and \vec{b}.

(v) $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is a scalar that gives the volume of the parallelepiped with edges $\overrightarrow{\vec{a}}, \vec{b}, \vec{c}$

Ponder: If we "lower" \vec{b} to the "ground", what happens to $(\vec{a} \times \vec{b}) \cdot \vec{c}$?
Answer: $(\vec{a} \times \vec{b}) \cdot \vec{c}=0$
9.5 Lines and Planes

Lines

New (vector) equation of a line (note: this equation is not unique)

ex) (a) Find an equation of a line through the point $(6,-5,2)$ and parallel to the vector. $\left\langle 1,3,-\frac{2}{3}\right\rangle$.
$(6,-5,2)$ is a point on the line, so $\vec{r}_{0}=\langle 6,-5,2\rangle$. The direction \vec{v} is $\left\langle 1,3,-\frac{2}{3}\right\rangle$.
The desired line is

$$
\begin{aligned}
\vec{r} & =t \vec{V}+\vec{r}_{0} \\
& =t\left\langle 1,3,-\frac{2}{3}\right\rangle+\langle 6,-5,2\rangle \\
& =\left\langle 6+t,-5+3 t, 2-\frac{2}{3} t\right\rangle
\end{aligned}
$$

(b) Find two other points on the line.
ex.) Find an equation of the line through point $(2,1,0)$ and perpendicular to both $\vec{V}=\langle 1,2,-1\rangle$ and $\vec{w}=\langle 0,-4,-4\rangle$.

Compute $\vec{v} \times \vec{w}$ to find direction perpendicular to both of them

$$
\dot{\vec{V}} \times \dot{\vec{W}}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{j} & \vec{k} \\
1 & 2 & -1 \\
0 & -4 & -4
\end{array}\right|=\langle 2(-4)-(-4)(-1),-(i(-4)-0), \quad 1(-4)-0\rangle=\langle-12,4,-4\rangle
$$

Desired line: $\vec{r}=\langle 2-12 t, i+4 t,-4 t\rangle$

Tuesday, September 1

Reminders

- WebAssign 9.5
- Writer HW, HW3 Sec 9.5 \#16,36, and A1
- Review conic sections
- Do Quiz 1 on Canvas
9.5 Lines and planes, cont.

Yesterday: equation of a line is $\overrightarrow{r_{0}}=t \vec{d}+\vec{r}_{0}$
ex) Find an equation of the line segment through points $(6,1,3)$ and $(2,4,5)$
The direction vector \vec{d} is formed by subtracting the two points. $\vec{d}=\langle 4,-3,-2\rangle$ Pick one of the points to be $\vec{r}_{0} \quad . \quad \vec{r}_{0}=\langle 6,1,3\rangle$.
Desired line segment: $\quad \vec{r}=\langle 6-4 t, 1+3 t, 3-2 t\rangle \quad 0 \leq t \leq 1$
ext) Are lines L_{1} and L_{2} parallel, intersecting, or skew?

$$
\begin{array}{ll}
L_{1}: & x=t, \quad y=1+2 t, z=2+3 t \\
L_{2}: & x=3=-45, y=2-35, \\
z=1+25
\end{array}
$$

. has direction vector. $\langle 1,2,3\rangle$
L2 has, direction vector $\langle\langle-4,-3,2\rangle$
The direction vectors are not, parallel, so L_{1} and L_{2} are not parallel
To, see if L_{1} intersects. L_{2}, try to find s_{0} and t. so that $L_{1}(t)=L_{2}(s)$ If L_{1} intersects, $L_{2,}$ then $\left\{\begin{array}{l}t_{0}=3-4 s \\ 1+2 t_{0}=2-3,5 \\ 2+3 t_{0}=1+25\end{array}\right.$ for sene st
Solving. we .get. $1+2(3-45)=2-35$,

$$
\begin{aligned}
1+6-8 s & =2-3 s \\
5 & =5 s \\
s & =1, t=-1
\end{aligned}
$$

Plug t into L_{1} and s into L_{2} to see if $L_{1}(t)=L_{2}(s)$.

$$
L_{1}(-1)=\langle-1,-1,-1\rangle, L_{2}\left(\frac{1}{0}\right)=\langle-1,-1,, 3\rangle
$$

L_{1} and L_{2} do not intersect, so they must be skew.

Planes
We cant specify a plane exactly the same way that we specified a lime (Gesture wild thy to explain why)

Vector equation of plane: $\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0$ where \vec{n} is a normal vector, \vec{r}_{0} is a point in the plane, and \vec{F}_{0} is the generic. vector $\langle x, y, z\rangle$.

Standard form of a plane: $a x+b y+c z=d$ where $\langle a, b, c\rangle$ is a normal vector and d is a constant.
ex). Find an equation of the plane through the point $(6,3,2)$ and perpendicular to the vector $\langle-2,1,5\rangle$. Then find .the intercepts and sketch

$$
\begin{aligned}
& \vec{n}_{0}=\langle-2,1,5\rangle \\
& \vec{r}_{0}=\langle 6,3,2\rangle
\end{aligned}
$$

Desired plane:

$$
\begin{aligned}
& \vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0 \\
& \langle-2,1,5\rangle \cdot(\langle x, y, z\rangle-\langle 6,3,2\rangle)=0 \\
& \langle-2,1,5\rangle \cdot\langle x-6, y-3, z-2\rangle=0 \\
& -2(x-6)+(y-3)^{\circ}+5(z-2)^{\circ}=0
\end{aligned}
$$

To find the x-intercept, set y and z to zero. Similarly for y and z intercepts $x-\operatorname{int}\left(-\frac{1}{2}, 0,0\right) \quad y-\operatorname{int}(0,1,0) \quad z-\min t\left(0,0, \frac{1}{5}\right)$

ex) Find an equation for the plane containing points $(0,1,1),(1,0,1)$, and $(1,1,0)$.
Subtract points to find two vectors in the plane, and then take the cross product to get a normal vector: $\quad \vec{v}=\langle-1,1,0\rangle, \vec{u}=\left\langle 0_{2}-1,1\right\rangle$.

$$
\dot{\vec{u}} \times \dot{\vec{v}}=\left|\begin{array}{ccc}
\vec{i} & \dot{\jmath} & \vec{k} \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right|=\langle i, i, i\rangle
$$

Let \vec{r}_{0} be $\langle 0,1,1\rangle$. Then our desired plane is,$\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0$

$$
\begin{array}{r}
\langle 1,1,1\rangle \cdot(\langle\langle x, y, z\rangle-\langle 0,1,1\rangle)=0 \\
\langle 1,1,\rangle\rangle \cdot\langle x, y-1, z-1\rangle=0 \\
x+y-y=z=-1=0 \\
x+y+, z=2
\end{array}
$$

ex 2) Where does the line $x=3-t, y=2+t, z=5$ intersect the plane $x-y+2 z=9$? Find t so that. $x(t), y(t), z(t)$ satisfy the plane equation

$$
\begin{aligned}
(3-t)-(2+t)+2(5 t) & =9 \\
8 t & =8 \\
t & =1
\end{aligned}
$$

Find point given by $t=1: \quad x(1)=2 \quad y(1)=3, \quad z(1)=5 \quad$ Point of intersection $(2,3,5)$
ex) How can you tell if 2 planes are parallel or intersecting? Can they be skew?
ext) Find distance between the point $(1,-2,4)$ and the plane $3 x+2 y+6 z=5$

Plan:
Find vector between given point and a random point on the plane. Project it onto the normal vector of the plane. Schematic:

Computation:

$$
\begin{aligned}
& \vec{V}=\langle 1,-2,4\rangle-\langle 1,1,0\rangle=\langle 0,-3,4\rangle \\
& \vec{n}=\langle 3,2,6\rangle \\
& \text { comp } \vec{n} \cdot \vec{V}=\frac{\vec{n} \cdot \vec{V}}{|\vec{n}|}=\frac{(0.3)+(-3.2)+(4 \cdot 6)}{\sqrt{3^{2}+2^{2}+6^{2}}}=\frac{18}{7}
\end{aligned}
$$

ex) Find distance between the point $(4,1,-2)$ and the line $x=1+t, y=3-2 t, z=4-3 t$ Hint: First draw a general picture and a plan like. in example 4.

Wednesday, September 1
Reminders

- Quiz 1 corrections due tonight
- Compile HW 2 for André
- Finish "LaTex and 9.6 practice" (for. Fri check-m).
- Review polar coordinates (for Fri)
9.6 Functions and surfaces

A z-trace or cross-section of a surface $z=f(x, y)$ is the intersection of the surface. with the plane $z=k$ for some constant k
y-traces and x-traces also exist.
ex 1) Draw the traces of $f(x, y)=6-3 x-2 y$. for $z=0,3,6,9$. Sketch $f(x, y)$

Sketch
intercepts $(0,0,6),(0,3,0),(2,0,0)$

ex 2) Draw the traces of $f(x, y)=x^{2}$ for $z=-1,0,1,2$. Sketch $f(x, y)$.
ex 3) Draw the traces of $f(x, y)=4 x^{2}+y^{2}$ for $z=0,2,4,6$. Sketch $f(x, y)$

Friday, September 3
Reminders

- WebAssign $9.6,9.7$ (everything up to 9.7 due Sunday).
- Written HW 3: Sec 9.6. \#15, 27.

Sec 9.7. \#26 (assume $r \geq 0$), 28, 32
A 2 (one surprising one?), A3

- Memorize 6 quadric surfaces (9.6 Table 2).
9.7 Cylindrical and spherical coordinates

Cylindrical coordinates

Drawing of cylindrical coordinates.
(3D view)

Relationship with Cartesian

$$
\begin{aligned}
& \begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\tan \theta=\frac{y}{x} \\
z=z
\end{array} \\
& \text { Cartesian } \\
& (x, y, z) \\
& \quad \begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta \\
(r=z
\end{array}
\end{aligned}
$$

ex 1). What is the shape described in cylindrical coordinates? Sketch it
(a) $r=3$
(b) $\theta=\pi / 4$
(c) $z=r^{2}$
(d) $4 \leq r \leq 5,0 \leq \theta \leq \pi, 0 \leq z \leq 1$
(e) $r<1,0 \leq \theta \leq \pi / 4,0 \leq z \leq 1$
(a). infinite cylinder of radius 3 .
along. z-axis.

(c). paraboloid along z-axis

(b) plane at an angle

(d) a "C "-shaped solid

(e) solid wedge of cheese

Spherical coordinates
Drawing of spherical. coordinates

Relationship with Cartesian

Spherical.
(ρ, θ, ϕ).

Greek letter phi ("fee".)
Greek letter rho ("roe")
ex) What is this shape described in spherical coordinates? Sketch it.
(a) $\rho=3$
(b) $\theta=\pi / 6$
(c) $\phi=\pi / 3$
(d) $4 \leq \rho \leq 5,0 \leq \phi \leq \pi / 2$
(e) $\rho \leq 3,0 \leq \theta \leq \pi / 2,0 \leq \phi \leq \pi / 2$
(f) $\rho \leq 3, \frac{3 \pi}{4} \leq \phi \leq \pi$
(a) sphere of. radius 3.

(b) half plane.

(d) solid half dome with thickness 1

(e) the part of the solid sphere of radius 3 in the first octant.

(c) infinite cone.

(f.) solid cone. with - round. cap.

Tuesday, September 8
Reminders

- Think about groupmates for group project.
- Review parametric equations.

Today activity: Go to student.desmos.com and use class code QDCAC8.
Make sets of. 3 cards by matching one 3D graph, one contour plot, and one equation.

Check-in 5 (due in class on Sept. 8)
Consider the quadric surface given by $x^{2}+z^{2}=y^{2}+4$
a.) Draw the trace of this surface at $y=0$

b.) Draw the trace of this surface at $x=0$

c) What is the shape of this quadric surface? Sketch it

Wednesday, September 9
Reminders

- WebAssign 10.1
- HWy. 4 ...?
- Meet group + pick topic for graphing project (due Thur).
- Prep for check-in 6.
10.1 Vector functions + space curves

A vector-valued function is a function with codomain \mathbb{R}^{n}. In. other other words, the output is a vector The graph of a vector-valued function is the set of all points at the tip of the vector output
ex 1) $\vec{r}(t)=\langle\underbrace{2+t}_{x(t)}, \underbrace{3-t}_{y(t)}\rangle$
This is a vector function from \mathbb{R} to $\mathbb{R}_{\text {.. }}^{2}$
Its graph is a line containing the point $(2,3)$. in the direction $\langle 1,-1\rangle$
ex 2) $\vec{r}(t)=\langle\sin (t), \cos (t)\rangle, 0 \leq t \leq 6 \pi$
This is a vector function from. \mathbb{R} to \mathbb{R}^{2} Its graph is a circle of radius 1 , starting. at $(0,1)$. and covering. the circle three times clockwise.
ex 3) $\vec{r}(t)=\langle\underbrace{\cos (t)}_{x(t)}, \underbrace{\sin (t)}_{y(t)}, \underbrace{t}_{z(t)}\rangle \quad 0 \leq t \leq 4 \pi$
This is a vector function from \mathbb{R}. to \mathbb{R}^{3}. Its graph is a helix. starting at $(1,0,0)$. and ending at $(1,0,4 \pi)$.

ex 4) Find a vector function that represents the curve of intersection between $z=4 x^{2}+y^{2}$ and $y=x^{2}$.

ex 5) $\vec{r}(r, \theta)=\langle r \cos \theta, r \sin \theta, 2\rangle, \quad 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$

- This is a. vector function. from \mathbb{R}^{2} to \mathbb{R}^{3}. Its graph is a disc of radius 1 . in the . plane $z=2$ centered at $(0,0,2)$.

ex 6) What is the dimension of each graph in examples 1-5?
examples 1-4: one dimension example 5: . two dimensions.

Computations with vector-valued functions
Given a vector-valued function, we can compute the following things component-wise:
(a). Domain
(b) Limit
(c) Derivative
(d) Intersection of curves
ex) $\vec{r}(t)=\left\langle e^{-1 t} \cos (t), t+1, e^{-1 t} \sin (t)\right\rangle \quad 0<t \leq 30$ $\lim _{t \rightarrow 0^{+}} \dot{\vec{r}}(t)=\langle 0, i, 0\rangle$

ex) $\vec{r}(t)=\left\langle\ln (t), t^{3}+4, \arctan (t)\right\rangle$ $\vec{r}^{\prime}(t)=\left\langle\frac{1}{t}, 3 t^{2}, \frac{1}{1+t^{2}}\right\rangle$
ex) If particle A travels along path $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ and particle B. travels along path $\vec{p}(s)=\langle x(s), y(s), z(s)\rangle$,
(a) do their paths cross? If we can find some , to and s_{0} so that $\vec{\zeta}\left(t_{0}\right): \vec{p}\left(s_{0}\right)$, then yes.
(b) do the particles collide? If we can fond some to and s_{0} so that $\vec{r}\left(t_{0}\right) \cdot \vec{p}\left(s_{0}\right)$ and $t_{0}=S_{0}$, then yes.

Friday. September II
Reminders

- WebAssign 10.2 . Week 3 . WebAssign due Sun.
- Written HW 4: 10.1 \#6,25; 10.2 \#2, 26, 32,38; A1, A2
- Review for Quiz 2
- Think about group graphing project
10.2 Derivatives and integrals of vector functions

The derivative of a vector function $\vec{r}(t)$ is denoted $\vec{r}^{\prime}(t)$ or $\frac{d \vec{r}}{d t}$. It is computed by applying. $\frac{d}{d t}$. to each component. That is, if $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$, then

$$
\dot{\vec{r}}^{\prime}(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle
$$

Derivative $f^{\prime}(x)$ in Cali 1

- f^{\prime} is a scalar.
- $f^{\prime}(a)$ is the slope of the tangent line at $x=a$

- If $f(x)$ is the position of a particle at time x, then $f^{\prime}(x)$ is its velocity
- If $f^{\prime}(a)=0$, then $f(x)$ has a horizontal tangent line at $x=0$.
- For a given "picture" of a curve, the derivative at a specific point is unique.

Derivative $\vec{F}^{\prime}(t)$ in Calc 3

- $\vec{r}^{\prime}(t)$ is a vector.
- $\vec{r}^{\prime}\left(t_{0}\right)$ is a tangent vector of the graph. of $\vec{r}(t)$ at the point $\vec{r}\left(t_{0}\right)$

- If $\vec{r}(t)$ is the position of a particle at time. t, then $\vec{r}^{\prime}(t)$ is the velocity vector
- If $\vec{r}_{0}^{\prime}\left(t_{0}\right)=0$, then the path "pauses" at $t=t_{0}$
- For a given "picture" of a curve, the derivative at a specific point depends. on the specific choice of parametrization

The unit tangent vector of $\vec{r}(t)$ is denoted $\vec{T}(t)$. We compute $\vec{T}(t)$ by dividing the derivative by its magnitude.

$$
\vec{T}^{\prime}(t)=\frac{\vec{r}^{\prime}(t)}{\left|r^{\prime}(t)\right|}
$$

ex 1) Give an equation of the tangent line of $\vec{F}(t)=\left\langle e^{t}, t e^{t}, t e^{t^{2}}\right\rangle$ at $(1,0,0)$
The point $(1,0,0)$ occurs, on. $\vec{F}(t)$ when $t=0$
The direction vector of the tangent line at $(1,0,0)$ is $\vec{r}^{\prime}(0)$.

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\left\langle e^{t}, t e^{t}+e^{t}, e t \cdot 2 t e^{t^{2}}+e^{t^{2}}\right\rangle \\
& =\left\langle e_{e}^{t}, e^{t^{(}(t+1),} e^{t^{2}}\left(2 t^{2}+1\right)\right\rangle \\
\vec{r}^{\prime}(0) & =\langle!, 1,1,
\end{aligned}
$$

The tangent line is $\vec{l}(t)=\langle 1,0,0\rangle+\dot{t}\langle\hat{1}, 1,1\rangle$

$$
=\langle 1+t, t, t\rangle
$$

ex 2) Give an equation of the tangent line of the curve of intersection of the cylinders $x^{2}+y^{2}=25$ and $y^{2}+z^{2}=20$ at the point $(3,4,2)$.

1) parametrize curve of intersection. projection on yz-plane is a circle of radius $\sqrt{20}$, so let $y=\sqrt{20} \cos t, z=\sqrt{20} \sin t$ for $0 \leq t \leq 2 \pi$.

Then the curve lies on $x^{2}+y^{2}=25$, so $x=\sqrt{y_{=}^{2}-25}=\sqrt{25-20 . \cos ^{2} t}$.
Curve : $\vec{r}(t)=\left\langle\sqrt{25-20 \cos ^{2} t}, \sqrt{20} \cos t, \sqrt{20}, \sin t\right\rangle$. Point (3, 4, 2) occurs at. $t=\arcsin \left(\frac{1}{\sqrt{5}}\right)$
2) Find tangent line

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\left\langle\frac{1}{2}\left(25-20 \cos ^{2} t\right)^{-\frac{1}{2}}(40 \cos \sin t), \sqrt{20} \sin t, \sqrt{20} \cos t\right\rangle \\
& \vec{r}^{\prime}\left(\arcsin \left(\frac{1}{1}\right)\right)=\langle 8 / 3,-2,4,\rangle
\end{aligned}
$$

Note $\langle 4,-3,6\rangle$, is also, a good direction vector.

$$
\vec{l}(t)=\langle 3+4 t, 4-3 t, 2+6 t\rangle
$$

3 more facts

- $\int \vec{F}(t) d t=\left\langle\int x(t) d t, \int y(t) d t, \int_{z}(t) d t\right\rangle$. (remember 3 separate ${ }^{*}+c_{\text {." }}$)
- Product rules (a) $\frac{d}{d t}[f(t) \vec{v}(t)]=f^{\prime}(t) \vec{v}(t)+f(t) \vec{v}^{\prime}(t)$
(b) $\frac{d}{d t}[\vec{v}(t) \cdot \vec{u}(t)]=\vec{v}^{\prime}(t) \cdot \vec{u}(t)+\vec{v}(t) \cdot \vec{u}(t)$.
(c) $\frac{d}{d t}[\vec{v}(t) \times \vec{u}(t)]=\vec{v}^{\prime}(t) \times \vec{u}(t)+\vec{v}(t) \times \vec{u}^{\prime}(t)$
- Chain rule $\frac{d}{d t}[\vec{u}(f(t))]=\vec{u}^{\prime}(f(t)) f^{\prime}(t)$

Check-in 6 (due in class Sept ii)

Find a vector equation of the curve of intersection of the cylinder $x^{2}+y^{2}=25$ and the plane $x+y+z=7$.

Monday September 13
Reminders

- WebAssign 10.3
- HW. 4 section 10.3. \#14,15
- Study for Quiz 2
10.3 Arc length

If you have a parametrized curve $\vec{F}(t)=\langle x(t), y(t), z(t)\rangle$, how do you compute the length of the curve from $t=a$. to $t=b$?
Notice $x^{\prime}(t)=\frac{d x}{d t}$ can be interpreted. as. "change in x. per unit of t (maybe time)"

We can use the Pythagorean Therem/distance formula to compute the length of the segment. that approximates the curve.
"Add" all the (infinitesimal) segment lengths to get the whole length.

Arc length formula of curve. $\vec{r}(t)$ from $t=a$ to $t=b$

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Q: What is a parametrization, really?
A: It is a choice of how we want, to place a grid on a shape.
In Calk 1 and 2, a function always used the grid system on the x-axis:

$$
\Rightarrow \quad \dot{A}_{1} \text { ea }=\int_{a_{0}}^{b} f(x) d x
$$

In Calc 3, a function may not have an obvious grid

In order to find the area of the fence, I need to pick where to start., which direction to go, and when to end.

That. what a parametrization is?

Reparametrizing. by arc length
Consider $\vec{F}(t)=\left\langle t^{3}, t\right\rangle$
Here. is a graph that shows its. current parametrization.

The points for consecutive values of t vary a lot in distance?
We can choose a different parametrization that's evenly spaced writ arc length, like. this.

2.) Take st) and solve for t so you have $t(s)$.
3.) Plug $t(s)$ into $\vec{r}(t)$ to get $\vec{r}(t(s)$. Now \vec{r} is given in terms of arc length s ! (a)
ex 1) Reparametrize $\vec{r}(t)=\langle 3 \sin t, 3 \cos t, t\rangle, t \geq 0$, by its arc length measured from $(0,3,0)$.
step 1) $\vec{F}^{\prime}(t)=\langle 3 \cos t,-3 \sin t, 1\rangle$
The point $(0,3,0)$.occurs at $t=0$.
. Find arc length function $s(t)=\int_{0}^{t} \sqrt{(3 \cos u)^{2}+(-3 \sin u)^{2}+1^{2}} d u$

$$
\begin{aligned}
& =\int_{0}^{t} \sqrt{10} d u \\
& =u \sqrt{10}]_{0}^{t} \\
s(t) & =t \sqrt{10}
\end{aligned}
$$

step 2) Since $s(t)=t \sqrt{10}$, we solve for t to get. $t(s)=\frac{s}{\sqrt{10}}$
step 3) Plug $t(s)$ into $\vec{r}(t) \quad \vec{r}(s)=\left\langle 3 \sin \left(\frac{s}{\sqrt{10}}\right), 3 \cos \left(\frac{s}{110}\right), \frac{s}{\sqrt{10}}\right\rangle, s \geq 0$
ex 2) What is the arc length of the curve in example 1 from $(0,3,0)$ to $\left(3 \sin \left(\frac{1}{10}\right), 3 \cos \left(\frac{1}{(10}\right), \frac{7}{\sqrt{10}}\right)$? 7

Tuesday, September 15

Reminders

-! Quiz 2 tonight!

Go. to. student. desmos.com, use, code, Q.DC AC8 and do the Parametric Matching activity.
10.5 Parametric surfaces
ex 1) Give a vector function for the portion of $x+y+3 z=3$. contained inside. $x^{2}+y^{2}=49$.

1) Sketch

2) Projection

3) Parametrize projection to get x and y coordinates

$$
\begin{array}{r}
\vec{F}(u, v)=\langle u \cos v, u \sin v, \\
.0 \leq v \leq 2 \pi \\
00 \leq u \leq 7
\end{array}
$$

4) Use. the fact. that our shape lies.on $x+y+3 z=3$. to. find z-coordinate.

$$
\begin{aligned}
& 3 z=3-x-y \\
& z=\frac{1}{3}(3-x=y) \\
& z=\frac{1}{3}(3-u \cos v-u \sin v)
\end{aligned}
$$

$$
\begin{gathered}
\vec{r}(u, v)=\left\langle u \cos v, u \sin ^{2} v, \frac{1}{3}(3-u \cos v-u \sin v) \cdot\right\rangle . \\
0 \leqslant v \leqslant 2 \pi
\end{gathered}
$$

ex 2) Give a parametrization for the portion of $z=x^{2}+y^{2}$. satisfying $.-1 \leq x \leq 1,-1 \leq y \leq 1$.

1) Sketch.

2.) Find convenient projection

3.). Use projection to get . x and. y.coordinates

$$
\begin{aligned}
& \vec{r}(u, v)=\langle u, v, \\
& -1 \leq u \leq 1
\end{aligned}
$$

4). Get z.coordinate by. lifting. $(x, y, 0)$ onto surface.

$$
\begin{aligned}
z & =x^{2}+y^{2} \\
& =u^{2}+v^{2}
\end{aligned}
$$

$\vec{r}(u, v)=\left\langle u, v_{0}, u_{0}^{2}+v_{0}^{2}\right\rangle$

$$
-1 \leq u \leq 1
$$

$$
-1 \leq . V \leq 1
$$

How to parametrize plane with point $P\left(p_{1}, p_{2}, p_{3}\right)$. and vectors $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$.

vector equation of a plane.

$$
\begin{aligned}
\vec{r}(u, v)= & \left\langle p_{1}, p_{2}, p_{3}\right\rangle+u\left\langle a_{1}, a_{2}, a_{3}\right\rangle+v\left\langle b_{1}, b_{2}, b_{3}\right\rangle \\
& -\infty<u<\infty \\
& -\infty<v<\infty
\end{aligned}
$$

ex 3) Give a vector equation of the plane through point $(1,2,-3)$ and containing. $\langle 1,1,-1\rangle$ and $\langle 1,-1,1\rangle$.

$$
\begin{aligned}
\vec{r}(u, v)= & \langle 1,2,3\rangle+u\langle 1,1,-1\rangle+v\langle 1,-1,1\rangle \\
\vec{r}(u, v) & =\left\langle{ }_{0} 1+u+v, 2_{0}+u-v, 3-u+v\right\rangle \\
& -\infty \leq u \leq \infty
\end{aligned}
$$

Wednesday, September 16

Reminders

- Compile. HW 4 for Andre
- WebAssign 10.5
- Quiz corrections due 10 pm tonight.
10.5 Surfaces (cont)
ext) Give a vector equation of the sphere of radius 2 centered at the origin.
Spheres are nice in spherical coordinates! In spherical coordinates, this. shape would be

$$
\rho=2,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi
$$

Now use the spherical-to-rectangular conversion. formulas to get our answer.

Formulas

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta \\
& z=\rho \cos \phi
\end{aligned}
$$

$$
\stackrel{\rightharpoonup}{r}(\dot{u}, v): \quad \begin{array}{ll}
\dot{x}=2 \sin u \cos v \\
y=2 \sin u \sin v \\
z=2 \cos u
\end{array} \quad \begin{aligned}
& 0 \leq u \leq \pi \\
&
\end{aligned} \quad 0 \leq v \leq 2 \pi
$$

exp) Find 2 different parametrizations for the upper half of the sphere of radius 2 parametrization 1: $\vec{r}(u, v)=\langle 2 \sin u \cos v, 2 \sin u \sin v, 2 \cos u\rangle$

$$
\begin{aligned}
& 0 \leq u \leq \pi / 2 \\
& 0 \leq v \leq 2 \pi
\end{aligned}
$$

parametrization 2: $\vec{r}(u, v)=\left\langle u \cos v, u \sin v, \sqrt{25-u_{0}^{2}}\right\rangle$

$$
0 \leq u \leq 2
$$

same as ex 4. but domain of ϕ is reduced.

$$
0 \leq V \leq 2 \pi
$$

. using projection and $x^{2}+y^{2}+z^{2}=4$

Shortcut. for parametrizing. surfaces with cross-sections that are circles (aka. surfaces of revolution)

If a surface is generated by "spinning" the 20. graph. $y=f(x)$ around a third axis, then one possible parametrization is

$$
\vec{r}(x, \theta)=\langle x, \quad f(x) \cos \theta, f(x) \sin \theta\rangle
$$

$0 \leq \theta \leq 2 \pi$; x whatever it is in the graph of $f(x)$
ex 6) Find a vector equation that generates a graph like this.

Figure 11

$$
\vec{r}(u, v)=\langle u, \sin (u) \cos (v), \sin (u) \sin (v)\rangle, 0 \leq u \leq 2 \pi, 0 \leq v \leq 2 \pi
$$

in Mathematica:

Group Members: \qquad

Timeline for Project

- Sept 16: Project assigned
- Sept 17: Project proposals due via email by 11:59 PM
- Sept 18: Work on project in class and present progress as Check-in 7
- Sept 25: Work on project in class and present progress as Check-in 9
- Oct 6: Project and reflections due via upload to Canvas as Check-in 10 (Upload a .NB file of your Mathematica notebook and a .PDF of your reflection questions. The grade will count toward Check-ins 10,11 , and 12)

Grading Rubric (24 points total)

- $(+6 \mathrm{pts})$ There are at least 12 parametric plots
- (+5 pts) At least five of the equations are different quares (ellipse, paraboloid, hyperboloid, etc)
- $(+5 \mathrm{pts})$ At least five of the equations are different curves
- ($+4 \mathrm{pts})$ Answer the reflection questions
- ($+4 \mathrm{pts})$ Pledge below is signed by all group members

Bonus points

- (+3 pts) Math department favorite
- (+3 pts) Most diverse set of equations
- ($+3 \mathrm{pts})$ Most difficult equation
- (+3 pts) (creative?)

Pledge: I certify that every group member contributed meaningfully to this project

Signature

Please complete these reflection questions together after completing your project.

1. Which part of your graph was the most difficult to make? What made it so difficult? How did your team eventually figure it out?
2. What was your most meaningful contribution to the project?
3. What is one thing you learned about parametrizing shapes from working on this?

Friday September 18
Reminders.

- WebAssign 11.1, and week 4 WebAssign due Sun.
- Written HW. 5 : everything except 11.2: [Kinda long, start early]. - Work on group project a bit (i)
- Review limit defer of continuity (links in Piazza)

Quick facts for 11.1 WebAssign and HW.
1.) A contour map is a picture of several z-traces drawn on the same axes.
ex. Contour map of.
function $f(x, y)=y-x^{2}$

Actual graph

2) Graph transformations of single variable functions works the same for multivariable functions.

Given $y=f(x) \ldots$
$\therefore f(x)+5$ shifts the graph 5 units in the positive y-direction

- $f(x+5)$ shifts the graph 5 units in the negative x-direction
$\therefore-f(x)$ reflects the graph over the x-axis (turn y into $-y$)
- $f(-x)$ reflects the graph over the y-axis (turn x into. $-x$)
- $3 f(x)$ stretches the graph by a factor of 3 in y-direction.
-f(3x) compresses the graph by a factor of 3 in X-direction

Given $z=f(x, y)$

- $f(x, y)+5$ shifts the graph 5 units. in the positive z-direction
$\therefore f(x+5, y)$ shifts the graph 5 units in the negative x-direction shifts the graph 5 units. in the negative y-direction
reflects the graph over the $f(x, y+5)$ $x y$-plane (turn z into $-z$)
- $f(-x, y)$ reflects the graph over the $y z$-plane (turn x into $-x$). $f(x,-y)$ ref. Is the graph over the $x z$-plane (turn y into $-y$)
- $3 f(x, y)$ stretches the graph by a factor of 3 in z-direction.
- $f(3 x, y)$ compresses the graph by a factor of 3 in x-direction $f(x, 3 y)$ compresses the graph by a factor of 3 in y-direction

Monday September 21
Reminder

- Work on graphing project.
11.1 Functions of several variables (cont)

A scalar-valued function can have however many variables we want ∇_{0} But the graphs will become hard to draw because the dimension will be very high. We will now discuss how to think about these functions of many variables.

Notation
function of 1 variable: $y=f(x)$
function of 2 vars: $\quad z=f(x, y)$
function of 3 vars: $\quad \omega=f(x, y, z)$ (since w. comes after x, y, z, of course.
function of n vars: $\omega=f\left(x_{1}, \ldots, x_{n}\right)$

Graphs
function of 1 var has a graph of dimension 1 that lives in \mathbb{R}^{2}

Level sets (a.k.a. traces of the output var) ... and has level sets of dimension 0 drawn in \mathbb{R}^{\prime}. (We never actually draw these, but l'll draw one here for the sake of analogy)
function of 2 vars have a. graph of dimension 2 that lives in \mathbb{R}^{3}
 Graph of $f(x, y)=x^{2}+y^{2}$
and have level sets of dimension 1 drawn in. \mathbb{R}^{2} : (Also called level curves because they're curves).

Level sets of $f(x, y)=x^{2}+y^{2}$ (concentric circles)
function of 3 vars have a
graph of dimension 3 that lives in \mathbb{R}^{4}
 (Don't know how to draw \mathbb{R}^{4} !)
... and have level sets of dimension 2 drawn in \mathbb{R}^{3}. (Also called level surfaces because they're surfaces).

11.2 Limits and continuity

When we worked with functions of 1 variable in Calc 1, we knew. that a limit existed if the limits from the left and right both. existed and were equal to each other.

Does $\lim _{x \rightarrow a} f(x)$ exist?
yes/no

Does $\lim _{x \rightarrow a} f(x)$ exist?
yes $/ n \sigma$.

Does $\lim _{x \rightarrow a} f(x)$ exist?
yes/ no

The same idea works for functions of several variables, but now instead of approaching a point from the left and right, there are infinitely many ways to approach the point?

Does $\lim _{\text {ax } \rightarrow \text { tate }} f(x, y)$ exist?

Does $\lim _{\text {and } \rightarrow \text { co se }} f(x, y)$ exist? yes/no

Does $\lim _{x, y \rightarrow \rightarrow a \rightarrow} f(x, y)$ exist?
yes no

Here's how we actually compute. limits algebraically
ex 1) Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{2}}$
Try to approach. $(0,0)$ along
x-axis.
(top view)
$\xrightarrow{\cdots} \bigcap^{y}$
The path of approach contains points whose y-coordinates are all zero, so set. $y=0$, and this will reduce the problem to the limit of a. 1:variable. function.
$\lim _{x \rightarrow 0} \frac{x \cdot 0}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{0}{x^{2}}=0$
[Note:: This 1 -var limit id does not require. I Hop ital's rule because the numerators is truly, exactly zero and not. just. gong to. zero as. a limit.]

Try to approach $(0,0)$ along y-axis.
(top view)
I similar to approaching along x-axis].

$$
\lim _{y \rightarrow 0} \frac{0 \cdot y}{0^{2}+y^{2}}=\lim _{y \rightarrow 0} \frac{0}{y^{2}}=0 \quad \text { Same as before! }
$$

Try to approach $(0,0)$ along the line $y=x$
(top, view) Every point along the line $. y=x$ has identical. x and y.coordinates,

so replace y with x and. let $x \rightarrow 0$ instead

$$
\lim _{x \rightarrow 0} \frac{x^{2} x}{x^{2}+x^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x^{2}}=\frac{1}{2} \text { Not the same!! }
$$

Since different paths of approach give different values,

Here's what's going on graphically

Copy and paste into Mathematics to get interactive model

[^0]Here's a faster way to do the same example
ex 1) (take 2) Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$

Every* line through the origin is given. by. the equation $y=m x$ for various slopes m. So. replace y, with $m x$ and let $x \rightarrow 0$. Then at the end, see. if your answer is constant for all m. $\lim _{x \rightarrow 0} \frac{x \cdot m x}{x^{2}+(m x)^{2}}=\lim _{x \rightarrow 0} \frac{m x^{2}}{\left(1+m^{2}\right) x^{2}}=\frac{m}{1+m^{2}}$

If. $m=1, \frac{m}{1+m^{2}}=\frac{1}{2}$. If $m=2, \frac{m}{1+m^{2}}=\frac{2}{5}$
Since different values of m give different. values. of. the limit, the limit
D NE

* except the line $x=0$

Yet another way to do this problem is. to use polar coordinates. In polar, every*. linear path of approach to the origin is described, by, $r \rightarrow 0$. So converting to polar, taking the limit as $r \rightarrow 0$, and then considering the effect of various values of θ will handle every linear. path. of approach. * I really mean it this time.
ex 1) (take 3) Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$
Convert to polar and let $r \rightarrow 0 \quad \lim _{r \rightarrow 0} \frac{r \sin \theta \theta \cos \theta}{(r \cos \theta)^{2}+(r \sin \theta)^{2}}=\lim _{r \rightarrow 0} \frac{r^{2} \cos \theta \sin \theta}{r_{0}^{2}}=\cos \theta \cdot \sin \theta$ If $\theta=0, \quad \cos \theta \cdot \sin \theta=0$. If $\quad \theta=\pi / b_{0}, \quad \cos \theta \cdot \sin \theta=\sqrt{3} / 4$
Since different values of θ give different limit values, the limit. DNE
ex 2) Evaluate $\lim _{(x, y \rightarrow 0,00} \frac{x y^{2}}{x^{2}+y^{4}}$
Try to approach (0,0) along the line $y=m x$
$\lim _{x \rightarrow 0} \frac{x \cdot(m x x)^{2}}{x^{2}+(m m)^{4}!}=\lim _{x \rightarrow 0} \frac{m^{2} x^{3}}{x^{2}+m^{1} x^{4}}=\lim _{x \rightarrow 0} \frac{m^{2} x^{x}}{1+m^{2} x^{2}}=0 \quad\left\{\begin{array}{l}\text { Alert! This does not mean the } \\ \text { original limit, is zero! }\end{array}\right.$

Try to approach $(0,0)$ along the curve $x=y^{2}$

$$
\lim _{y \rightarrow 0} \frac{y^{2} \cdot y}{\left(y^{2}\right)^{2}+y^{4}}=\lim _{y \rightarrow 0} \frac{1}{y}
$$

$\lim _{y \rightarrow 0^{-0}} \frac{1}{y^{-}}=-\infty$ and $\lim _{y \rightarrow 0} \frac{1}{y}=+\infty$, so $\lim _{y \rightarrow 0} \frac{1}{y}$ does not exist.
Thus, $\lim _{(x, y) \rightarrow 0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist.

Side note: Attempting this limit .via polar coordinates, is a bit subtle.

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \frac{r^{3} \cos \theta \sin ^{2} \theta}{r^{2} \cos ^{2} \theta+r^{4} \sin ^{4} \theta} \\
& \lim _{r \rightarrow 0} \frac{r \cos \theta \sin ^{2} \theta}{\cos ^{2} \theta+r^{2} \sin ^{4} \theta}
\end{aligned}
$$

if $\theta \neq \frac{\pi}{2}+k \pi: \lim _{r \rightarrow 0} \frac{0}{\cos ^{2} \theta+0}=0$
if $\theta=\frac{\pi}{2}+k \pi$: divide by zero error, try some other method
ex 3) Evaluate $\lim _{(x, y \rightarrow 0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}$
Try to approach $(0,0)$ along the line $y=m x$
$\lim _{x \rightarrow 0} \frac{3 x^{2} m x}{x^{2}+(\operatorname{mm} x)^{2}}=\lim _{x \rightarrow 0} \frac{3 m x^{3}}{\left(1+m^{2}\right) x^{2}}=\lim _{x \rightarrow 0} \frac{3 m x}{1+m^{2}}=0 .\left\{\begin{array}{l}\text { Alert! This does not mean the } \\ \text { original limit is zero! }\end{array}\right.$
Convert to polar and take the limit as $r \rightarrow 0$.

$$
\lim _{r \rightarrow 0} \frac{3(r \cos \theta)^{2}(r \sin \theta)}{(r \cos \theta)^{2}+(r \sin \theta)^{2}}=\lim _{r \rightarrow 0} \frac{3 r^{3} \cos \theta \sin \theta}{r^{2}}=\lim _{r \rightarrow 0} 3 r \cos \theta \sin \theta=0
$$

Use Squeeze Theorem.
Since .letting $r \rightarrow 0$ in polar accounts. for all paths. to (0,0) we may. safely. say

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}=0
$$

Tuesday September 22
Reminders

- WebAssign 11.2
- WW 5 , all problems
- Work on graphing project.
11.2 Limits (cont)
ex 4) Evaluate $\lim _{(x, y \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)$
This is really screaming out for polar coordinates
- $\lim _{r \rightarrow 0} r^{2} \ln \left(r^{2}\right)$ (looks like " 0 - "." so use liHopitalis rule)

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \frac{\ln \left(r^{2}\right)}{\frac{1}{r^{2}}} \xrightarrow{\text { rutôitals }} \lim _{r \rightarrow 0} \frac{\frac{1}{r^{2}} \cdot 2 r}{\frac{2}{r^{2}}}=\lim _{r \rightarrow 0} \frac{2}{r} \cdot \frac{r^{3}}{-2}=0 \\
& \lim _{(x, x \rightarrow 0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)=0
\end{aligned}
$$

ex 5) Evaluate $\lim _{(x, y \rightarrow 0,0)} \frac{x^{2} y e^{y}}{x^{4}+4 y^{2}}$
Try. to approach (0,0) along the line $y=m x$. $\lim _{x \rightarrow 0} \frac{x^{2}(m x) e^{m x}}{x^{4}+4(m x)^{2}}=\lim _{x \rightarrow 0} \frac{m x^{3} e^{m x}}{x^{4}+4 m^{2} x^{2}}=\lim _{x \rightarrow 0} \frac{m x x^{m x}}{x^{2}+4 m^{2}}=0 \quad\left\{\begin{array}{l}\text { Alert! This does not mean the } \\ \text { original limit is zero! }\end{array}\right.$ Try to approach $(0,0)$ along the curve $y=x^{2}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x^{2} \cdot x^{2} \cdot e^{x^{2}}}{x^{4}+4 x^{4}}=\lim _{x \rightarrow 0} \frac{e^{x^{2}}}{5}=\frac{1}{5} \\
& \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y e^{y}}{x^{4}+4 y_{0}^{2}}=\frac{1}{5}
\end{aligned}
$$

Continuity
A function $f(x, y)$ is continuous at (a, b) if $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$
To prove $f(x, y)$ is continuous at (a, b), (1) compute $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$, .
(2) Compute $f(a, b)$, and.
(3) say parts 1 and 2 are equal
ex 6) Is $g(x, y)$ continuous on its entire domain?

$$
g(x, y)=\left\{\begin{array}{cll}
\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right) & \text { if }(x, y) \neq(0,0) & \text { No, since } \lim _{\text {(x, }) \rightarrow(0,0)}\left(x^{2}+y^{2}\right) \ln \left(x^{2}+y^{2}\right)=0 \\
1, & \text { if }(x, y)=(0,0) & f(0,0)=1, \text { and } 0 \neq 1
\end{array}\right.
$$

exp) Is $g(x, y)$ continuous on its entire domain?

$$
g(x, y)=\left\{\begin{array}{ccc}
\frac{3 x y^{2}}{x^{2}+y^{2}} & , \text { if }(x, y) \neq(0,0) \\
0 & , \text { if }(x, y)=(0,0)
\end{array}\right.
$$

No, since $\lim _{(x, y)(0,0)} \frac{3 x y^{2}}{x^{2}+y^{2}}$ does not. exist.

Check-in 8
Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$

Wednesday September 22
Reminders

- Compile. HW5 for André.
- WebAssign .1. 3
- Work on graphing project
11.3 Partial derivatives
(Look at GeoGebra demo at www.geogebra.com/m/kdphzd5k)
The partial derivatives of $f(x, y)$ with respect to x and y are, respectively,

$$
\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \quad \frac{\partial f}{\partial y}=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

Other notation for the partial derivative: $f_{x}(x, y), f_{x}, \frac{\partial f}{\partial x}(x, y), \frac{\partial}{\partial x} f(x, y), \frac{\partial}{\partial x}(f), \frac{\partial z}{\partial x}, D_{x} f$ (and similarly for y)
ex 1) What is the sign of $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ and $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$ for the function graphed below?
What is the sign of $\frac{\partial^{2} f}{\partial x^{2}}\left(x_{0}, y_{0}\right)$ and $\frac{\partial^{2} f}{\partial y^{2}}\left(x_{0}, y_{0}\right)$ for the function graphed below?

$\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)^{\circ}$ is positive: $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)^{\circ}$ is negative. $\frac{\partial^{2} f}{\partial x^{2}}\left(x_{0}, y_{0}\right)$ is positive . $\frac{\partial^{2} f}{\partial y^{2}}\left(x_{0}, y_{0}\right)$ is negative

We. can compute $\frac{\partial f}{\partial x}$ by taking. the derivative of $f(x, y)$ with respect to x as a variable and holding y constant.
ex 2). Let $f(x, y)=\frac{x-y}{x+y}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial x}(0,-3)$

$$
\frac{\partial f^{0}}{\partial x_{0}}=\frac{(x+y)(1)^{0}-(x-y)(1)}{(x+y)^{2}}=\frac{2 y}{(x+y)^{2}}
$$

$$
\frac{\partial f}{\partial x}(0,-3)=\frac{2(-3)}{(0-3)^{2}}=-\frac{2}{3}
$$

ex 3) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for $\sin (x y z)=x+2 y+3 z$
We cant easily solve for Z, so we must use implicit differentiation

$$
\begin{aligned}
& \frac{\partial}{\partial x}(\sin (x y z)=x+2 y+3 z) \\
& \cos (x y z) \cdot y\left(x \cdot \frac{\partial z}{\partial x}+1 \cdot z\right)=1+0+3 \frac{\partial z}{\partial x} \\
& x y \cos (x y z) \frac{\partial z}{\partial x}-3 \frac{\partial z}{\partial x}=1-y z \cos (x y z) \\
& \frac{\partial z}{\partial x}=\frac{1-y y \cos (x y z)}{x y \cos (x y z)-3}
\end{aligned}
$$

We can also take higher-order derivatives. $f_{x x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)$. (take derivative with respect to x.twice)
$f_{y y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)$. (take derivative with respect to y, twice)
$f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$ (take derivative with respect to x and then y)
$f_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$ (take derivative with respect to y and then x).
Are these the same?

Clairant's. Theorem
Suppose f is defined on a disk D containing the point (a, b). If both $f_{x y}$ and $f_{y x}$ are continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$

Partial derivatives of parametrized surfaces.
[ie, surfaces written as $\vec{r}(u, r)=\langle x(\omega, u), y(u(n), z(a, r)\rangle$, instead of $z=f(x, y)]$.
For a parametrized surface $\vec{r}(u, r)$, its partial derivatives. \vec{r}_{u} and \vec{r}_{r} are computed. like this.

$$
\vec{r}_{u}=\left\langle\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right\rangle ; \quad \vec{r}_{v}=\left\langle\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right\rangle
$$

The geometric meaning of \vec{r}_{u}. is. that it is a vector tangent to the surface, $\vec{r}(u, v)$. But even. more than that, \vec{r}_{u} is a vector tangent to the curves given by constant v.
ex 4) Let. $\vec{r}(u, v)=\left\langle u \cos v, u \sin v, \sqrt{25-u^{2}}\right\rangle, 0 \leq u \leq 5,0 \leq v \leq 2 \pi$
(a) Draw $\vec{r}(u, v)$ and draw several curves given by constant u, v values.

$$
\begin{array}{ll}
\text { If } u=0, & \vec{r}(0, v)=\langle 0,0,5\rangle \\
u=3, & \vec{r}(3, v)=\langle 3 \cos \theta, 3 \sin \theta, 4\rangle \\
u=4, & \vec{r}(4, v)=\langle 4 \cos \theta, 4 \sin \theta, 3\rangle \\
\text { If } v=0, & \vec{r}(u, 0)=\left\langle u, 0, \sqrt{25-u^{2}}\right\rangle \\
& v=\pi / 4 \\
& \vec{r}\left(u, \frac{\pi}{4}\right)=\left\langle\frac{0}{2} u, \frac{\pi}{2} u, \sqrt{25-u^{2}}\right\rangle
\end{array}
$$

Color on graph ~

(b. Draw. $\vec{r}_{u}\left(3, \frac{\pi}{4}\right)$ and $\vec{r}_{v}\left(3, \frac{\pi}{4}\right)$ on the surface without doing any computations

11.4 Tangent planes and linear approximation

Linear approximation of $y=f(x)$.
(from Calc 1)

The tangent line of $f(x)$. at $x=a$ is a good approximation for $f(x)$ near $x=a$

Linear approximation of $z=f(x, y)$
(from Calc 3)

The tangent plane of $f(x, y)$ at $(x, y)=(a, b)$, is a good approximation for $f(x, y)$. near (a, b).
ex 1) Look at ex 4. in .11.3. Find the tangent plane to $\vec{r}(u, v)$ at the point $\left(3, \frac{\pi}{4}\right)$

$$
\dot{\vec{r}}(u, v)=\left\langle u^{\circ} \cos v, u \sin v, \sqrt{25-u^{2}}\right\rangle
$$

(computations to. find normal rector).

$$
\begin{aligned}
& \text { (computations trofond nor mail rector, } \\
& \vec{r}_{s}(u, v)=\left\langle\cos v, \sin v,-u\left(25-u^{2}\right)^{-9 / 2}\right. \\
& \vec{r}_{v}(u, v)=\langle-u \sin v, u \cos v, 0 \\
& \vec{r}_{u}\left(3, \frac{\pi}{4}\right)=\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2},-\frac{3}{4}\right\rangle \\
& \vec{r}_{v}\left(3, \frac{\pi}{4}\right)=\left\langle-\frac{3 \sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}, 0\right\rangle \\
& \vec{r}_{u} \times \vec{r}_{v}=\left\langle\frac{9 \sqrt{2}}{8},-\left(-\frac{9 \sqrt{2}}{8}\right), 3\right\rangle
\end{aligned}
$$

To find the equation of a tangent plane, we need a point. on the plane and a vector normal to the plane.

Point: $\vec{r}\left(3, \frac{\pi}{4}\right)=\left\langle\frac{3 \sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}, 4\right\rangle$ Normal vector: $\langle 3,3,4 \sqrt{2}\rangle$

Tangent plane:

$$
3\left(x-\frac{3 \sqrt{2}}{2}\right)+3\left(y-\frac{3 \sqrt{2}}{2}\right)+4 \sqrt{2}(z-4)=0
$$

convenient normal $\langle 3,3,4 \sqrt{2}\rangle$
ex 2) Write the linearization of $\vec{r}(u, v)=\left\langle u \cos v, u \sin v, \sqrt{25-u^{2}}\right\rangle$ at $\left(3, \frac{\pi}{4}\right)$
Solve tangent plane equation for z

$$
\begin{aligned}
& 3\left(x-\frac{3 \sqrt{2}}{2}\right)+3\left(y-\frac{3 \sqrt{2}}{2}\right)+4 \sqrt{2}(z-4)=0 \\
& 3\left(x-\frac{3 \sqrt{2}}{2}\right)+3\left(y-\frac{3 \sqrt{2}}{2}\right)+4 \sqrt{2} z-16 \sqrt{2}=0 \\
& 3\left(x-\frac{3 \sqrt{2}}{2}\right)+3\left(y-\frac{3 \sqrt{2}}{2}\right)-16 \sqrt{2}=-4 \sqrt{2} z
\end{aligned}
$$

ex 3) Use a linearization of $f(x, y)=x e^{x y}$, at $(1,0)$ to approximate $f(1,1,-0,1)$

Step 1 option A: Find normal vector to tangent. plane using parametrization.

$$
\begin{aligned}
& \vec{r}(u, x)=\left\langle u, v, u e^{u v}\right\rangle \\
& \vec{r}_{u}(u, v)=\left\langle 1,0, e^{u v}+u v e^{u v}\right\rangle \\
& \vec{r}_{v}(u, v)=\left\langle 0, f_{x}^{\prime \prime}, u^{2} e^{u v}\right\rangle \\
& \vec{r}_{u} \times \vec{r}_{v}=\left\langle-e_{0}^{u v}(1+u v), \ldots f_{y}^{\prime \prime} e^{u v}, 1\right\rangle \\
& \vec{r}_{u} \times\left.\vec{r}_{v}\right|_{u(u)}=\langle-1,-1,1\rangle
\end{aligned}
$$

Step 1 option B: Find normal rector to tangent. plane using. formula for surfaces. .of the form $z=f(x, y)$

$$
\begin{aligned}
& f_{x}=e^{x y}+x y e^{x y} \\
& f_{y}=x^{2} e^{x y} \\
& \left.f_{x}\right|_{(1,1)}=1 \\
& \left.f_{y}\right|_{(1,0)}=1
\end{aligned}
$$

normal vector formula: $\left\langle f_{x}, f_{y},-1\right\rangle$
normal vector: $\langle 1,1,-1\rangle$

Step 2 : Find point of tangency.

$$
\begin{aligned}
& x=1 \\
& y=0 \\
& z=f(1,0)=1
\end{aligned}
$$

point: $(1,0,1)$

Step 3: Write linearization

$$
\begin{aligned}
& L(x, y)=1+1(x-1)+1(y-0) \\
& L(x, y)=x+y
\end{aligned}
$$

Step 4: Use linearization by plugging in $(1.1,-0.1)$

$$
L(1,0)=1.1+(-0.1)=1
$$

Step 5: State conclusion

$$
\text { For } f(x, y)=x e^{x y} \text { we know } f_{0}(1.1,-0.1) \approx 1
$$

Monday, September 27

Reminders

- Study. for Quiz. 3. Review problems on Piazza

WebAssign II .5.
HW. 6., all except A2

- HWy. 7 , section. $11.5, A 1, A 2$

11.5 Chain rule

In calc 1, we used the chain rule to compute the derivative of a composition of functions Chain rule: Given. $f(x)$ and $g(x), \quad \frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)): g^{\prime}(x) \ldots$ or. $\frac{d f}{d g} \cdot \frac{d g}{d x}$

In calk 3, function composition itself is more complicated. The output of an inner function must be compatible with the domain of the outer function.

Consider the following functions:

$$
\begin{array}{lrl}
& \mathbb{R} \rightarrow \mathbb{R} \quad h(x) & =e^{x} \\
\mathbb{R}^{2} \rightarrow \mathbb{R} \quad f(x, y) & =x^{2}+y^{2} \\
\mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad \mathbf{g}(x, y) & =\langle x+y, 3 x-y, 2 x+y\rangle \\
\mathbb{R} \rightarrow \mathbb{R}^{3} \quad \mathbf{r}(t) & =\langle\cos t, \sin t, t\rangle \\
\mathbb{R} \rightarrow \mathbb{R}^{2} \quad \mathbf{p}(t) & =\langle-\sin t, \cos t\rangle \\
\mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \mathbf{w}(x, y, z) & =\langle 2 x, 2 y\rangle
\end{array}
$$

For each of the compositions below, indicate whether or not they are defined by circling (a) or (b). If they are defined, fill in the boxes to show the dimensions of the input and output spaces.

1. (a) $f \circ h: \mathbb{R}^{\square} \mathbb{R}^{\square}$
(b) $f \circ h$ is not defined.
2. (a) $h \circ f: \mathbb{R}^{2} \mapsto \mathbb{R}^{\square}$
(b) $h \circ f$ is not defined.
3. (a) $\mathbf{g} \circ \mathbf{w}: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$
(b) $\mathbf{g} \circ \mathbf{w}$ is not defined.
4. (a) $\mathbf{w} \circ \mathbf{g}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$
(b) $\mathbf{w} \circ \mathbf{g}$ is not defined.
5. (a) $f \circ \mathbf{g}: \mathbb{R}^{\square} \mathbb{R}^{\square}$
(b) $f \circ \mathbf{g}$ is not defined.
6. (a) $\mathbf{g} \circ \mathbf{p}: \mathbb{R}^{\square} \mapsto \mathbb{R}^{3}$
(b) $\mathbf{g} \circ \mathbf{p}$ is not defined.
7. (a) $\mathbf{r} \circ \mathbf{w}: \mathbb{R}^{\square} \mathbb{R}^{\square}$
(b) $\mathbf{r} \circ \mathbf{w}$ is not defined.
8. (a) $f \circ \mathbf{p}: \mathbb{R}^{\square} \mapsto \mathbb{R}^{\square}$
(b) $f \circ \mathbf{p}$ is not defined.
9. There are 6 more meaningful compositions of the given functions that were not named above. List at least three of them.

Chain rule (general version)
Suppose u is a differentiable function of the n variables $x_{1}, x_{2}, \ldots, x_{n}$. and each x_{j} is a differentiable function of the m. variables $t_{1}, t_{2}, \ldots, t_{m}$. Then for each $i=1,2, \ldots, m$

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}} .
$$

ex 1) If $u=x^{4} y+y^{2} z^{2}$, where $x=r s e^{t}, y=r s^{2} e^{-t}$, and $z=r_{0}^{2} s \sin t$, find $\frac{\partial u}{\partial s}$ when $r=2, s=1, t=0$
Step 1: tree diagram

Step 2 : Use tree to write chain rule for $\partial \mathrm{du} / \mathrm{s}$.

$$
\frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial s} \quad \text {...or } u_{s}=u_{x} x_{s}+u_{1} y_{s}+u_{z} z_{s}
$$

Step 3: Compute derivatives.

$$
\frac{\partial u}{\partial s}=\left(4 x^{3} y\right)\left(r e^{t}\right)+\left(x^{4}+2 y z^{2}\right)\left(2 r s e^{-t}\right)+\left(2 y^{2} z\right)\left(\cdot r^{2} \sin t\right)
$$

Step 4: Plug in values for r,s,t [Notice? The given values for r,s,t also determine values for x, y, z]

$$
\begin{aligned}
& x(z, 1,0)=2 \\
& y(2,1,0)=2 \\
& z(2,1,0)=0 \\
& \left.\frac{\partial u}{\partial s}\right|_{\substack{k=2 \\
s=1 \\
=0}}=\left(4(2)^{3} z\right)\left(2 e^{0}\right)+\left(2^{4}+2 \cdot 2 \cdot 0^{2}\right)\left(2 \cdot 2 \cdot 1 \cdot e^{0}\right)+\left(2: 2^{2} \cdot 0\right)\left(2^{2} \cdot \sin 0\right) \\
& \\
& =128 \\
& \\
& =192+192
\end{aligned}
$$

[example 2° postponed to tomoriou]
ex 3)
34. Wheat production W in a given year depends on the average temperature T and the annual rainfall R. Scientists estimate that the average temperature is rising at a rate of $0.15^{\circ} \mathrm{C} / \mathrm{year}$ and rainfall is decreasing at a rate of $0.1 \mathrm{~cm} /$ year. They also estimate that, at current production levels, $\partial W / \partial T=-2$ and $\partial W / \partial R=8$.
a. What is the significance of the signs of these partial derivatives?
b. Estimate the current rate of change of wheat production, $d W / d t$.

Information given.

$$
\begin{array}{ll}
W=W(T, R) \\
\frac{d T}{d t}=0.15 & \frac{d R}{d t}=-0.1 \\
\frac{\partial W}{\partial T}=-2 & \\
& \frac{\partial W}{\partial R}=8
\end{array}
$$

(a). $\left[\frac{\partial W}{\partial T}=-2^{\circ}\right]$

At current production levels, each $1^{\circ} \mathrm{C}$. increase in . temperature. will reduce wheat. production by about. 2 units.
$\left[\frac{\partial W}{\partial R}=8^{\circ}\right] \quad \begin{aligned} & \text { At current production levels, each } 1 \mathrm{~cm} \text { increase } \\ & \text { will increase wheat. production by about. } 8 \text {. units. }\end{aligned}$
(b)

$$
\begin{aligned}
\frac{d W}{d t} & =\frac{\partial W}{\partial T} \frac{d T}{d t}+\frac{\partial W}{\partial R} \cdot \frac{d R}{d t} \\
& =(-2)(0.15)+(8)(-0.1)
\end{aligned}
$$

$=-1 .!$ units of. wheat. per year.

Tuesday September 29
Reminders

- Important? Do Quiz 3. between 7. -10 pm .
11.5 Chain rule (cont)

Warm-up: Let $W(s, t)=F(u(s, t), v(s, t))$. Draw a tree diagram and write the chain rule for W_{s}.

ex 2) $[H W 7$ prob A1] Show that any function of the form $z=f(x+a t)+g(x-a t)$ is a solution to the wave equation $\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$. [a is a nonnegative. constant.]

Step 1: tree diagram

Step 2 : Use tree to write chain rule for $\frac{\partial^{2} z}{\partial t^{2}}$, $\frac{\partial^{2} z^{2}}{\partial x^{2}}$
Try. on your own

$$
\begin{aligned}
& z_{t}=z_{f} f_{t}+z_{g} g_{t} \\
& z_{t t_{0}}=\left(z_{t}\right)_{t}=\left(z_{f}\right)_{t} f_{t}+\underline{z_{f}\left(f_{t}\right)_{t}}+\left(z_{g}\right)_{t} g_{t}+\underline{z_{g}\left(g_{t}\right)_{t}} \\
&=\left(z_{f f} f_{t}+z_{f g} g_{t}\right) f_{t}+z_{f} f_{t t}+\left(z_{g t} f_{t}+z_{g g} g_{t}\right) g_{t}+z_{g} g_{t t} \\
&=z_{f f}\left(f_{f}\right)^{2}+2 z_{f g} f_{t} g_{t}+z_{g g}\left(g_{t}\right)^{2}+z_{f} f_{t t}+z_{g} g_{t t}
\end{aligned}
$$

Step 3: Compute derivatives

$$
\begin{aligned}
z_{t t} & =0+0+0+\frac{1 \cdot a^{2} f^{\prime \prime}(x+a t)}{0}+1 \cdot a^{2} g^{\prime \prime}(x-a t) \\
& =a^{2}\left(f^{\prime \prime}(x+a t)+g^{\prime \prime}(x-a t)\right)
\end{aligned}
$$

Step 4 Compute right -hand side and hope show the two sides are equal.
14. Let $W(s, t)=F(u(s, t), v(s, t))$, where F, u, and v are differentiable, and

$$
\begin{array}{rlrl}
u(1,0) & =2 & v(1,0) & =3 \\
u_{s}(1,0) & =-2 & v_{s}(1,0) & =5 \\
u_{t}(1,0) & =6 & v_{t}(1,0) & =4 \\
F_{u}(2,3) & =-1 & F_{v}(2,3) & =10
\end{array}
$$

Find $W_{s}(1,0)$ and $W_{t}(1,0)$.

$$
\begin{aligned}
& u^{\prime} F_{v} W_{s}=F_{u} U_{s}+F_{v} v_{s} \\
& s^{\prime} H_{t}^{\prime} \text { st. } W_{t}=F_{u} U_{t}+F_{v} v_{t} \\
& W_{s}(1,0)=F_{u}(u(1,0), v(1,0)), u_{s}(1,0)+\dot{F}_{v}(u(1,0), v(1,0)) v_{s}(1,0) \\
& =F_{u}(2,3)(-2)+\dot{F}_{v}(2,3)(5) \\
& =(-1) \cdot(-2)+(10) \cdot(5) \\
& =52 \\
& W_{t}(1,0)=F_{u}\left(u(100, v(1,0)) u_{t}(1,0)+F_{v}(u(1,0), v(1,0)) V_{t}(1,0)\right. \\
& =(-1)(.6)+(10)(4) \\
& =.34
\end{aligned}
$$

* Popular exam. question.

Note about WebAssign
Implicit Function Theorem (see book) is mentioned in last 3 questions of 11.5 WebAssign. It's not important for us - either follow the given formula or do implicit differentiation the same way you have before

Wednesday September 29
Reminders

- Compile HW 6. for André
- Submit Quiz 3 corrections by. 10 pm
11.6 Directional derivatives and the gradient vector

Derivatives we know (and love) so far:

- For vector:valued, one-parameter curves $\vec{r}(t)$, we know $\vec{r}^{\prime}(t)$ is the tangent vector to the. curve.

- For vector-valued, two-parameter surfaces $\vec{r}(u, v)$, we know the partial derivatives \vec{r}_{u} and $\vec{r}_{v v}$ are vectors tangent to the surface (ie they lie in the tangent plane).

- For scalar-valued functions $z=f(x, y)$, the partial derivatives f_{x} and f_{y} are scalars that give the slope of the curve given by fixing a constant value for y and x, respectively.

Now introducing ... the gradient!

- For a scalar valued function $z=f(x, y) \quad[$ or $\omega=f(x, y, z)]$ the gradient of f is the vector. of partial derivatives $\left\langle f_{x}, f_{y}\right\rangle$. [or. $\left.\left\langle f_{x}, f_{y}, f_{z}\right\rangle.\right]$.. In . formal notation,.

$$
\left.\operatorname{grad} f=\nabla f=\left\langle f_{x}, f_{x}\right\rangle \quad \text { or } \quad\left\langle f_{x}, f_{x}, f_{z}\right\rangle\right]
$$

ex 1) Compute the gradient of. $f(x, y)=9-x^{2}-y^{2}$. Draw the level curves and some gradient vectors on the same axes.
$\nabla f=\langle-2 x,-2 y\rangle$
Some specific values of of

$$
\begin{aligned}
& \approx \nabla f(0,0)=\langle 0,0\rangle \\
& \approx \nabla f(1,0)=\langle-2,0\rangle \\
& \operatorname{mf} \nabla(2,0)=\langle-4,0\rangle \\
& \operatorname{mf}(\sqrt{2}, \sqrt{2})=\langle-2 \sqrt{2},-2 \sqrt{2}\rangle
\end{aligned}
$$

Better picture by Mathematica

Big arrow means big rate of change in that direction, ie. very steep Smaller anow. means smaller growth ie. less steep.

Notice every arrow points "up". toward higher ground.

Notice every vector is orthogonal to. the circles of the. contour. plot.

This is consistent with our knowledge that $z=9-x^{2}-y^{2}$ is a downward parababobid.

Properties of the gradient.

- Its graph is drawn in the domain of f.
[ex) For $f(x, y)$, draw of on $\left.\mathbb{R}_{0}^{2}\right]$
- Its graph is a bunch of vectors
- Each gradient vector points in the direction of fastest increase (ie. steepest uphill)
- Each gradient vector at a point is orthogonal to. the level curve through that point
- The magnitude of each gradient. vector is the rate of change of f in the direction of the vector.
ex 2). [Now with more dimensions!]. Let. $T(x, y, z)=x^{2}+y^{2}+z^{2}$ be the temperature of a room.
(a) Compute ∇T. and use Mathematica to plot ∇T.

$$
\nabla T=\left\langle 2 x, 2 y_{0}, 2 z\right\rangle
$$

Mathematica code:
VectorPlot3D $[\{2 x, 2 y, 2 z\},\{x,-4,4\},\{y,-4,4\},\{z,-4,4\}$, VectorColorFunction -> "Rainbow"].

(b) Draw a few level surfaces to convince yourself that the gradient vectors are orthogonal to level surfaces,

I Important thought for later: If a surface can be interpreted as the level surface of some higher-dimensional function f, then ∇f produces vectors orthogonal to the surface. This makes finding tangent planes very easy.]
(b) A sweaty bee is at $(-3,0,4)$. In what direction should it fly to cool down fastest? $\nabla T_{0}(-3,0,4)=\langle-6,0,8\rangle$. The direction of fastest temperature decrease is $\langle 6,0,-8\rangle$.

Here's yet another derivative?

- For a scalar-valued function of and a freed unit vector \vec{u}, the directarand derivative $o f$ of in the direction of, \vec{u} is

$$
D_{\vec{u}} f=\nabla f \cdot \overrightarrow{\vec{u}}
$$

$D_{\vec{u}} f$ is a scalar that gives the rate of change of f in the direction of \vec{u}. It is the same idea as f_{x} or f_{y}, but along an arbitrary vector. \vec{u} instead of along curves given by fixed y or x.

ex 3) If the sweaty bee in example 2 . flies in the direction $\langle 1,1,0\rangle$, is it getting cooler?
$\nabla \dot{T}=\langle 2 x, 2 y, 2 z\rangle$
$\nabla T(-3,0,4)=\langle-6,0,8\rangle$
unit vector of $\langle 1,1,0\rangle$, is $\vec{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} 10\right\rangle$
$D_{\vec{u}} T^{0}=\langle-6,0,8\rangle:\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right\rangle$
$=-3 \sqrt{2}$. Yes the bee is cooling off, but not
as quickly as it would $B E E^{8}$ if it flew
in the direction $\langle 6,0,-8\rangle$, opposite
the gradient.

Friday, October 2

Reminders

- All Week 6 WebAssign due Sunday before midnight
- HW 7, section 11.6
- Work on graphing project (due Oct 6, Tues.).
- Review Calc 1 concept of max/min problems.

Definition. The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $\mathbf{u}=\langle a, b\rangle$ is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if this limit exists.

Part 1: Find an alternate definition for the directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $\mathbf{u}=\langle a, b\rangle$.

Define a new function $g: \mathbb{R} \rightarrow \mathbb{R}$ as follows

$$
g(h)=f\left(x_{0}+h a, y_{0}+h b\right) .
$$

1. Verify that $g^{\prime}(0)=D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$ using the limit definitions of the derivative and the directional derivative.
2. Use the chain rule and the fact that $g(h)=f(x(h), y(h))$ where $x(h)=x_{0}+h a$ and $y(h)=y_{0}+h b$ to find $g^{\prime}(0)$.
3. Use your answers to parts (1) and (2) to give a formula for $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$.
4. What does the directional derivative $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$ represent?

Part 2: Cliff is hiking Montaña Derivado. Go to https://www.geogebra.org/m/raxnv2b8 to see the surface $f(x, y)$ that represents the mountain.

1. Each of the following points represents a location on the mountain the Cliff has hiked by. For each point, find the directional derivative in the direction of \mathbf{u}.
(i) $\left(x_{0}, y_{0}\right)=(-1,-1), \mathbf{u}=\langle 0.9,-0.43\rangle$

$$
\begin{aligned}
& D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)= \\
& D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)= \\
& D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=
\end{aligned}
$$

(ii) $\left(x_{0}, y_{0}\right)=(2,1), \mathbf{u}=\langle-0.8,-0.6\rangle$
(iii) $\quad\left(x_{0}, y_{0}\right)=(1,0), \mathbf{u}=\langle 0,1\rangle$
2. What does the values of $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$ you found above represent?
3. For each of the following points, find the unit vector \mathbf{u} such that $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)$ is the largest and the unit vector \mathbf{v} such that $D_{\mathbf{v}} f\left(x_{0}, y_{0}\right)$ is zero. Draw the vectors on the contour plots below.

4. Fill in the blanks.
(a) The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of \mathbf{u} is largest when \mathbf{u} is
\qquad to the contour line at $\left(x_{0}, y_{0}\right)$. In this case, \mathbf{u} is pointing in the direction where the mountain is \qquad .
(b) The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of \mathbf{u} is zero when \mathbf{u} is
\qquad to the contour line at $\left(x_{0}, y_{0}\right)$. In this case, \mathbf{u} is pointing in the direction where the mountain is \qquad .

Definition. If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=f_{x}(x, y) \mathbf{i}+f_{y}(x, y) \mathbf{j}
$$

Alternate definitions. The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $\mathbf{u}=\langle a, b\rangle$ can also be written as

$$
\begin{aligned}
& D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)= \\
&=\quad \cdot \mathbf{u} \\
& \cos (\theta)
\end{aligned}
$$

where θ is the angle between \qquad and \mathbf{u}.
5. How can we use these alternate definitions to prove the statements in Problem 4?

Part 3: Now, Cliff is hiking Montagne Vecteur. The surface of the mountain is given by the following equation

$$
f(x, y)=4-0.5 \sqrt{3 x^{2}-2.5 x y^{2}+y^{4}} .
$$

1. Find $\nabla f(x, y)$.
2. Go to https://www.geogebra.org/m/fcvck9ca to see the surface $f(x, y)$. A contour plot of the mountain is shown below. Find the following gradient vectors and plot each on the contour plot below.

(i) $\quad \nabla f(-1.3,1.42)=$ \qquad
(ii) $\nabla f(0.55,-1.54)=$ \qquad
(iii) $\nabla f(4.01,1.15)=$ \qquad
(iv) $\nabla f(0,0)=$ \qquad
3. Cliff is at the point $(-1,-1)$. He is debating whether he should take the steepest path to the top of the mountain or stay at his current elevation and go around.
(a) What direction should Cliff head if he wants to take the steepest path to the top of the mountain? Explain.
(b) What direction should Cliff head if he wants to go around the mountain, staying at his current elevation? Explain.
4. After deciding to go around, Cliff is at the point $(2,1.27)$ when he spots a bear at point $(1.6,1.1)$.
(a) What direction should Cliff run if he wants to run in the opposite direction of the bear? Explain.
(b) What direction should Cliff run if he wants to run down the steepest part of the mountain? Explain.

Reminders

- Graphing project due tomorrow (before midnight.)
- upload reflection + pledge as check-in II.
- email me the . NB file
- WebAssign 11.7, problems 2,3,4.5
11.7 Max + min values

In Call 1

In Call 3

Takeaway: Finding points where $f_{x}=0$ and $f_{x}=0$ (in other words, $\nabla f=0$) will identify. possible candidates for local \max / min of $f(x, y)$.

In Call 1

In Call 3

local min

Takeaway: If the second derivative exists, it can help detect max/min points.

The analogue of the single-variable $f^{\prime \prime}(x)$ from Calc 1 is a 2×2 matrix of partial derivatives called. the Hessian (name not important).

$$
\text { Hessian of } f(x, y)=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right] \quad \text { Determinant of Hessian }=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|
$$

Second derivative test: Suppose the second partial derivatives of $f(x, y)$ are continuous on a disk. with center (a, b) and $f_{x}(a, b)=0, f_{y}(a, b)=0$. Let. $D_{0}=D_{0}(a, b)=f_{x x}(a, b), f_{y y}(a, b),-\left[f_{x y}(a, b)\right]^{2}$
(a). If $D>0$ and $f_{x x}(a, b)>0$., then $f(a, b)$ is a local minimum
(b). If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum
(c). If $D_{0}<0$, then $f(a, b)$ is a saddle point
(d). If. $D_{0}=0$, then this test gives no conclusion. Time to get creative?
ex) Classify all critical points of $f(x, y)=4+x^{3}+y^{3}-3 x y$
Step 1: Find critical points by solving. $f_{x}=0, f_{y}=0$

$$
\begin{array}{ll}
f_{x}=3 x^{2}-3 y \\
f_{y}=3 y^{2}-3 x
\end{array}\left\{\begin{array}{ll}
3 x^{2}-3 y=0 \\
3 y^{2}-3 x=0
\end{array} \quad y^{4}-y=0, ~ y\left(y^{3}-1\right)=0, ~ \begin{array}{ll}
x^{2}=y & y=0 \\
y^{2}=x & x=1
\end{array} \quad\right. \text { (protup: complete each ordered pair immediately) }
$$ critical points: $(0,0) .(1,1)$.

Step 2: Compute .D

$$
\begin{array}{ll}
f_{x x}=6 x & D=f_{x x} f_{y y}-\left[f_{x y}\right]^{2} \\
f_{y y}=6 y & \\
f_{x y}=-3 & D=36 x y-9
\end{array}
$$

Step 3: Analyze each critical point

$$
\begin{aligned}
& D(0,0)=-9 \text {, so } f \text { has a saddle point at . }(0,0) \\
& D(1,1)=27 \text {, and } f_{x x}(1,1)=6 \text {, so. } f \text { has a local min at }(1,1)
\end{aligned}
$$

ex 2) Classify all critical points of $f(x, y)=4+x^{3}+y^{3}-3 x y$ by analyzing the contour plot

Here's what the surface looks like

Saddle point
ex 3) [section 11.7 prob 13]. Find local extrema and saddle points of $f(x, y)=\left(x_{0}^{2}+y^{2}\right) e^{y^{2}-x^{2}}$
Step. 1: Find critical points.

$$
\begin{aligned}
f_{x} & =2 x e^{y^{2}-x^{2}}+\left(x^{2}+y^{2}\right) e^{y^{2}-x^{2}}(-2 x) \\
& =2 x e^{y^{2}-x^{2}}\left(1-x^{2}-y^{2}\right) \\
f_{y} & =2 y e^{y^{2}-x^{2}}+\left(x^{2}+y^{2}\right) e^{y^{2 x^{2}}}(2 y) \\
& =2 y e^{y^{2}-x^{2}}\left(1+x^{2}+y^{2}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
2 x e^{y^{2-x^{2}}}\left(1-x^{2}-y^{2}\right)=0 \\
2 y e^{y^{2}-x^{2}}\left(1+x^{2}+y^{2}\right)=0
\end{array}\right.
$$

- If $x=0$, then $2 y e^{y^{2}}\left(1+y^{2}\right)^{0}=0$, which is only the when $y=0$. critical point $(0,0)$
- $e^{y^{2} x^{2}}$ is never zero
- If $1-x^{2}-y^{2}=0$, then $x^{2}+y^{2}=1$. Plug in to second equation to get $2 y e^{y^{2} x^{2}}(1+1)=0$, which is only true when $y=0$. This means $x= \pm 1$.
Critical points $(1,0),(-1,0)$
Step 2: Compute D and analyse critical points

$$
\begin{aligned}
f_{x x} & =2 e^{y^{2} x^{2}}\left(1-x^{2}-y^{2}\right)+2 x\left[e^{y^{2} x^{2}}(-2 x)\left(1-x^{2}-y^{2}\right)+e^{y^{2} x^{2}}(-2 x)\right] \\
& =2 e^{y^{2}-x^{2}}\left(1-x^{2}-y^{2}\right)-4 x^{2} e^{y^{2} x^{2}}\left(1-x^{2}-y^{2}\right)-4 x^{2} e^{y^{2} x^{2}} \\
& =2 e^{y^{2}-x^{2}}\left[\left(1-x^{2}-y^{2}\right)-2 x^{2}\left(1-x^{2}-y^{2}\right)-2 x^{2}\right] \\
f_{y y} & =2 e^{y^{2} x^{2}}\left(1+x^{2}+y^{2}\right)+2 y\left[e^{y^{2} x^{2}}(2 y)\left(1+x^{2}+y^{2}\right)+e^{y^{2}-x^{2}}(2 y)\right] \\
& =2 e^{y^{2} x^{2} x^{2}}\left[\left(1+x^{2}+y^{2}\right)+2 y^{2}\left(1+x^{2}+y^{2}\right)+2 y^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& f_{x y}=2 x e^{y^{2}-x^{2}}(2 y)\left(1-x^{2}-y^{2}\right) \\
&=4 x y e^{y^{2}-x^{2}}\left(-x^{2}-y^{2}\right) \\
& f_{x x}(0,0)=2[1]=2 \\
& f_{y y_{0}}(0,0)=2[1]=2 \\
& f_{x y}(0,0)=0 \\
& D(0,0)=2 \cdot 2-0^{2}=4
\end{aligned}
$$

of has a local min of 0 at $(0,0)$

Tuesday, October 6
Reminders

- Graphing project due before midnight tonight
- Upload. PDF of reflections + pledge as Check-in 11
- Email..NB file to cherry.ng@colorado.edu
- Ask HW7 questions on OneNote, if deswed.
- Finish WebAssign 11.7

Extreme Value Theorem
If f is continuous on a closed, bounded set D in \mathbb{R}^{2}, then f is guaranteed to have an absolute max and absolute min on D

In Calk 1

continuous on $[a, b]$

continuous on $(a, b]$

continuous on (a, b)

continuous on $[a, c) \cup[c, b]$

In Calces 3

3D view

$z=x^{2}+y^{2}$

Domain

$x^{2}+y^{2}<1$
$\checkmark f$ is continuous?
\checkmark domain is bounded? \Rightarrow existence of absolute X domain is closed?

Domain

$\sqrt{ } f$ is continuous?
\checkmark domain is bounded? \Rightarrow existence of absolute D \checkmark domain is closed?

Procedure for finding absolute extrema
1.) Find value of f at all critical points of f in domain (note: do not use . $D=f_{x x} f_{y y}-\left[f_{x y}\right]^{2}$)
2.) Find extreme values of of on boundary of domain. (note: This part is a Calc 1 -style max/ min problem)
3.) Compare values from steps 1 and 2 to find the biggest/smallest.
ex 4) [section 11.7 problem 29] Find the absolute extrema of $f(x, y)=x^{2}+y^{2}+x^{2} y+4$. on the set. $D=\{(x, y)| | x|\leq 1,|y| \leq 1\}$,

Step 1: Find critical points of of in D

$$
\begin{aligned}
& \begin{array}{l}
f_{x}=2 x+2 x y \\
f_{y}=2 y+x^{2}
\end{array} \quad\left\{\begin{array}{l}
2 x(1+y)=0 \\
2 y+x^{2}=0
\end{array}\right. \\
& \text { - If } x=0, y=0 \text {. } \\
& \text { crit pt }(0,0) \\
& \text { - If. } 1+y=0, y=-1 \text {, and }-2+x^{2}=0 \text {, so } x= \pm \sqrt{2} \text {. } \\
& \text { But }(\pm \sqrt{2},-1) \text { is not in } D \text {. } \\
& \text { no crit pts } \\
& \text { - If. } 2 y+x^{2}=0, . y=\frac{-x^{2}}{2} \text {, so. plus into } \\
& \text { equation } 1 \text { to get } 2 x\left(1-\frac{x^{2}}{2}\right)=0 \text {; } \\
& \text { which gives } x=0, x= \pm \sqrt{2} \\
& \text { no crit pts } \\
& \text { These are redundant }
\end{aligned}
$$

Step 2: Find extrema on boundary by using Calc. 1 skills.

Picture of D.
Boundary of D

$-1_{0} \leq x \leq 1$.

$$
\begin{array}{ll}
\vec{r}_{1}\left(t_{0}\right)=\langle 1, t\rangle & -1 \leq t_{0} \leq 1 \\
\vec{r}_{2}\left(t_{0}\right)=\left\langle-1, t_{0}\right\rangle, & -1 \leq t_{0} \leq 1 \\
\vec{r}_{3}\left(t_{0}\right)=\left\langle t_{0}, 1\right\rangle, & -1 \leq t_{0} \leq 1 \\
\vec{r}_{4}\left(t_{0}\right)=\left\langle t_{0},-1\right\rangle & \\
\hline & -1 \leq t_{0} \leq 1
\end{array}
$$

Finding extrema on boundary

$f\left(\vec{r}_{1}(t)\right)$	$=1^{2}+t^{2}+t+4$
	$=t^{2}+t+5$
$\frac{d}{d t} f\left(\vec{r}_{1}(t)\right)$	$=2 t+1$
0	$=2 t+1$
t	$=-\frac{1}{2}$
crit.pt $\left(1,-\frac{1}{2}\right)$	
endpoints $(1,-1),(1,1)$	

$f\left(\vec{r}_{2}(t)\right)$	$=1+t^{2}+t+4$
$\frac{d}{d t} f\left(\vec{r}_{2}(t)\right)$	$=2 t+1$
0	$=2 t+1$
t	$=-\frac{1}{2}$
crit pot $\left(-1,-\frac{1}{2}\right)$	
endpoints $(-1,1),(-1,-1)$	

$f\left(\vec{r}_{3}(t)\right)$	$=t^{2}+1+t^{2}+4$
	$=2 t^{2}+5$
$\frac{d^{2}}{d t} f\left(\vec{r}_{3}(t)\right)$	$=4 t$
t	$=0$
crit pt $(0,1)$	
endpoints redundant	

$$
\begin{aligned}
& f\left(\vec{r}_{a}(t)\right)=t^{2}+1-t^{2}+4 \\
&=5 \\
& \frac{d}{d t} f\left(\vec{r}_{4}(t)\right)=0 \\
& \text { infinitely many crit pts } \\
&(t,-1) \text { for all }-1 \leq t \leq 1
\end{aligned}
$$

Step 3: Compare values of of at critical points.
Picture of all critical points.

$$
\begin{array}{ll}
f(0,0)=4 & f\left(-1,-\frac{1}{2}\right)=4.75 \\
f\left(1,-\frac{1}{2}\right)=4.75 & f(0,1)=5 \\
f(1,-1)=5 & f(-1,1)=7 \\
f(1,1)=7 & f(-1,-1)=5 \\
\text { Absolute max value of } 7 \text { at }(1,1) \text { and }(-1,1) \\
\text { Absolute min value of } 4 \text { at }(0,0)
\end{array}
$$

ex 5) (variant of a question on WebAssign 11.7.)
Find absolute extrema of $f(x, y)=2 x^{3}+y^{4}$ on $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$

$$
\begin{array}{ll}
f x=6 x^{2} \\
f y=4 y^{3} & : \text { |f } x=0, y=0 \\
6 x^{2}=0 & \text { crit } p t_{0}(0,0) \\
4 y^{3}=0
\end{array}
$$

P picture of. D

Boundary of D

$$
\begin{aligned}
\vec{r}(t)= & \langle\cos t, \sin t\rangle \\
& 0 \leq t \leq 2 \pi
\end{aligned}
$$

$$
f(\vec{r}(t))=2 \cos ^{3} t+\sin ^{4} t .
$$

$$
\frac{d}{d t} f(\vec{r}(t))=6 \cos ^{2} t(-\sin t)+4 \sin ^{3} t(\cos t)
$$

$$
0=2 \sin t \cos t\left(-3 \cos t+2 \sin ^{2} t\right)
$$

$$
\sin t=0 \quad \cos t=0
$$

$$
t=\frac{\pi}{2}, \frac{3 \pi}{2}
$$

$$
-3 \cos t+2 \sin ^{2} t=0
$$

$$
-3 \cos _{t_{0}}+2\left(1_{1}-\cos ^{2} t\right)=0
$$

C.P. $(0,1)(0,-1)$
$2 \cos ^{2} t+3 \cos t-2=0$
$(2 \cos t-1)(\cos t+2)=0$
$\cos t=0 \frac{1}{2}, \quad \cos t=-2$

$$
t_{0}=\frac{\pi}{3}, \frac{5 \pi}{3_{0}}, \text { no sol. }
$$

$$
\text { c.p. }\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
$$

Compare values of f. at. critical points

$$
\begin{array}{ccccccc}
(x, y) & (0,0) & (1,0) & (-1,0) & (0,1) & (0,-1) & \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\
f(x, y) & 0 & 2 & 1 & -2 & 1 & \left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right) \\
\hline & \uparrow & \uparrow & & .8125 & .8125 \\
\text { max } & & \text { min } & &
\end{array}
$$

f has a max value of 2 at $(1,0)$ f. has a min value of -2 at $(0,1)$
ex) [section 11.7 pro 47] A cardboard box without a lid is to have a volume of $32,000 \mathrm{~cm}$. Find the dimensions that minimize the amount of cardboard. used.

$$
\begin{aligned}
\text { Volume } & =x y z \\
32,000 & =x y z \\
z & =\frac{32,000}{x y}
\end{aligned}
$$

Cardboard used $=x y+2 x z+2 y z$

$$
\begin{aligned}
& =x y+2 z(x+y) \\
& =x y+2\left(\frac{32,000}{x y}\right)(x+y) \\
0<x<16,000 \quad & 0<y<16,000
\end{aligned}
$$

Coal: Find min of $f(x, y)=x y+2(x+y)\left(\frac{32000}{x y}\right)$ on $0 \leq x<16,000,0<y<16,000$.

$$
\begin{aligned}
& f_{x}=y+2\left(\frac{32,000}{x y}\right)+2(x+y)\left(-\frac{32,000}{x y^{2}}\right) \\
& f_{y}=x+2\left(\frac{32,000}{x y}\right)+2(x+y)\left(-\frac{32,000}{x^{2} y}\right) \\
& \left\{\begin{array}{l}
x y^{3}+64,000 y-64,000(x+y)=0 \\
x^{3} y+64,000 x-64,000(x+y)=0 \\
\left\{\begin{array}{l}
x y^{3}-64,000 x=0 \\
x^{3} y-64,000 y=0 \\
x
\end{array}\right. \\
\left\{\begin{array}{l}
x\left(y^{3}-64,000\right)=0 \\
\left.x^{3}-64,000\right)=0
\end{array}\right.
\end{array}\right\} .
\end{aligned}
$$

- If $x=0, y=0$

$$
\because \text { If } y^{3}-64000=0, y=40, x=40
$$

crit pt. 0,0) crit pt $(40,40)$

Picture of D

Boundary of D

$$
\begin{array}{ll}
\vec{r}_{1}(t)=\langle 0, t\rangle & 0<t<16,000 \\
\vec{r}_{2}(t)=\langle 0 t, 0\rangle & 0<t<16,000 \\
\vec{r}_{3}(t)=\langle 16,000, t\rangle & 0<t<16,000 \\
\vec{r}_{4}(t)=\langle 0 t, 16,000\rangle & 0<t<16,000
\end{array}
$$

Find. critical points on . boundary
$f\left(\vec{r}_{1}(t)\right)$. undefined. $f\left(\vec{r}_{3}(t)\right)=16,000 t-64,000\left(\frac{16,000+t}{16000} t\right) . \quad f\left(\vec{r}_{1}(t)\right)=$ same as $f\left(\vec{r}_{3}(t)\right)$.
$f\left(\vec{r}_{2}(t)\right)$. undefined. $\quad=16,000 t-4 \cdot\left(\frac{16000}{t}+1\right)$

$$
\frac{d}{d t} f\left(\vec{r}_{3}(t)\right)=16,000-4 \cdot\left(\frac{-16,000}{t^{2}}\right)
$$

$$
\theta=.16,000+\frac{64,000}{t^{2}} .
$$

endpoints: $(0,0) ;(0,16000)$,
no solution.
$(16,000,0), \quad(16000,16000)$

Compare function values.
ouse limits when f. is undefined.)

Let $x=40 \mathrm{~cm}, y=40 \mathrm{~cm}, z_{0}=20 \mathrm{~cm}$ to minimize cardboard.

Wednesday October 7
Reminders

- Compile HW 7 for André
11.8 Lagrange Multipliers

Let's consider example 5 from yesterday from a new perspective.
ex 5) Find absolute extrema of $f(x, y)=2 x^{3}+y^{4}$ on $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1.\right\}$
There were 3 parts to this problem
1). Find critical points. inside D by solving $\nabla f=\overrightarrow{0}$
2). Find critical points on boundary by parametrizing boundary, plugging into f, and solving $\frac{d}{d t} f(\vec{r}(t))=0$
3). Compare all function values at all critical points.

We investigate step 2 graphically.
Can we visually find the max and min of of along the boundary?

Notice that the critical points occur where the boundary curve is tangent to a level curve in the contour plot.

Method of. Lagrange multipliers
Goal: Find maximin values of $f(x, y, z)$ given some constraint $g(x, y, z)=k$
Step 1: Solve for x, y, z, and λ using $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$ and $g(x, y, z)=k$
Step 2: Compare the values of f at points found in step 1.
ex 1) Find the extrema of $f(x, y)=x^{2}+y$. subject to the constraint $x^{2}+y^{2}=1$

$$
f(x, y)=x_{0}^{2}+y
$$

$g(x, y)=x^{2}+y^{2}$ (more than one valid choice for g) constraint:: $g(x, y)=1$.

$$
\begin{aligned}
& \nabla f=\langle 2 x, 1\rangle \\
& \nabla g=\langle 2 x, 2 y\rangle \\
& \nabla f=\lambda \nabla \nabla \\
& \nabla f= \\
& \langle 2 x, 1\rangle=\lambda\langle 2 x, 2 y\rangle \\
& \langle 2 x, 1\rangle=\langle 2 x \lambda, 2 y \lambda\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
2 x-2 x \lambda=0 \\
2 y \lambda=1 \\
x^{2}+y^{2}=1
\end{array}\right. \\
& \left\{\begin{array}{c}
2 x(1-\lambda)=0 \\
2 y \lambda_{0}=1 \\
x^{2}+y^{2}=1
\end{array}\right.
\end{aligned}
$$

- If. $x=0$, then use third equation $t o$. get $y= \pm 1$. Then use second equation to get λ; crit pts $(0,1) \quad \lambda=\frac{1}{2}$ $(0,-1) \quad \lambda=-\frac{1}{2}$ - If. $1-\lambda=0$, then $\lambda=1$. Use second equation to get $y=\frac{1}{2}$. Then use third equation to get $x=\frac{ \pm \sqrt{3}}{2}$ crit pts $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right), \lambda=1$

$$
\left(\frac{-\sqrt{3}}{2}, \frac{1}{2}\right), \lambda=1
$$

- If $2 y \lambda=1, \lambda=\frac{1}{2 y}$. Plug in to first equation to get $x\left(2 y_{0}-1\right)=0$. This only gives redundant, points

Test critical points

$$
\frac{(x, y)}{f(x, y)} \cdot \frac{(0,1)}{1} \cdot(0,-1) \cdot\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \cdot\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)
$$

When restricted to $g(x, y)=1$, f has a max of $5 / 4$ at $\left(\frac{ \pm}{\frac{3}{3}}, \frac{i}{2}\right)$ and a min of. -1 at $(0,-1)$
ex 2) Find the extrema of $f(x, y)=x^{2}+y$. subject to the constraint $x^{2}+y^{2}=1$ by examining the contour plot

ex) [section 11.8 prob 30] Find the points on the surface $y^{2}=9+x z$. that are closest to the origin.
Coal: Find min of $d(x, y, z)=\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}}$ given x, y, z must, satisfy. the constraint $y_{0}=9+x z$
(Pro tip: minimize. $D=d^{2}=x^{2}+y^{2}+z^{2}$. instead. for, easier algebra).

$$
\begin{aligned}
& D(x, y, z)=x^{2}+y^{2}+z_{0}^{2} \\
& g(x, y, z)=y^{2}-x z-q
\end{aligned}
$$

. Constraint: $g(x, y, z)=0$.

$$
\begin{aligned}
\nabla D_{0} & =\lambda \nabla_{0} g \\
\langle 2 x, 2 y, 2 z\rangle & =\lambda\langle-z, 2 y,-x\rangle
\end{aligned}
$$

Solve $\left\{\begin{array}{l}2 x=-\lambda z \\ 2 y=2 \lambda y \\ 2 z=-\lambda x \\ y_{0}^{2}-x z-9=0\end{array} \quad\left\{\begin{array}{l}2 x=-\lambda z \\ 2 y(1-\lambda)=0 \\ 2 z=-\lambda x \\ y_{0}^{2}-x z-9=0\end{array}\right.\right.$

- Solve for λ in first and third equations to get $\frac{2 x}{}{ }^{\circ}=\frac{2 z}{x}$ so $x^{2}=z^{2}$.
- Equation 2. shows that $y=0$ is possible. This gives. $x z=-q$ in equation. 4. Together with $x^{2}=z^{2}$, we - get. these critical. points.

$$
\begin{aligned}
& (3,0,3), \lambda=-2 \\
& (3,0,-3), \lambda=2 \\
& (-3,0,3), \lambda=2 \\
& (-3,0,-3), \lambda=-2
\end{aligned}
$$

- Equation 2 shows. $\lambda=1$ is possible. Plug this in to first and third equation. to get $x=0, z=0$.

$$
\begin{array}{ll}
(0,3,0) & \lambda=1 \\
(0,-3,0) & \lambda=1
\end{array}
$$

Compare values at critical points
$D(3,0,3)=18$
D $(3,0,-3)=18$
D $(-3,0,3)=18$
D $(-3,0,3)=18$.
D $(0,3,0)=9$
$D(0,-3,0)=9$.

The points $(0, \pm 3,0)$, on . the surface $y^{2}=x, z+9$ are the .closest. points to. the origin. They are $\sqrt{9}=3$. units. from the .origin.

Friday October 9
Reminders

- All week 7 WebAssign due before midnight on Sunday.
- HF 8 sections $11.8,12.1, A 1, A 2$ super helpful for Quiz 4
- Study for Quiz 4 (sections 11.5 to 12.1)
- Review Calc 2 concept: Area between curves. (links in Piazza)
12.1 Double integrals over rectangles

Area under a curve

Left endpoints with n rectangles.

$$
\text { Area } \approx f(a) \cdot h+f(a+h) h+\cdots f(a+(n-1) h) \cdot h
$$

$$
L_{n}=\sum_{i=0}^{n-1} h f(a+i h)
$$

Right endpoints with n. rectangles

$$
\text { Area } \approx f(a+h) h+f(a+2 h) h+\cdots f(a+n h) h
$$

$$
R_{n}=\sum_{i=1}^{n} h f(a+i h)
$$

Midpoints with n rectangles.
Area $\approx f\left(x_{1}^{*}\right) h+f\left(x_{2}^{*}\right) h+\cdots+f\left(x_{n}^{*}\right) h$

$$
M_{n}=\sum_{i=1}^{n} h f\left(x_{i}^{*}\right)
$$

Key idea: Take the limit as the width of rectangles goes to zero to get $\int_{a}^{b} f(x) d x$

- Volume under a surface

In this drawing, the height of each box is given by the function's value at the corner closest to the origin. Like in the case for area, using a different point (x, y) in the domain will give a different . volume estimate

Volume $\approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \triangle A$, where $\triangle A$ is the area of the base of each box, ie the part on the $x y$-plane

Key idea: True volume under $z=f(x, y)=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A$.
Definition: The double integral of f over the region R is

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}^{*}, y_{j}^{*}\right) \Delta A
$$

ex 1). Evaluate $\iint_{R} \sqrt{1-x^{2}} d A$. for $R=[-1,1] \times[-2,2]$. by interpreting it geometrically.

- $\iint_{R}^{0} \sqrt{1-x^{2}} d A$ is the volume of half a. cylinder of radius 1., height 4.

$$
\begin{aligned}
\iint_{R} \sqrt{1-x^{2}} d A & =\frac{1}{2} \pi r^{2} h \\
& =\frac{1}{2} \pi(1)^{2}(4) \\
& =2 \pi
\end{aligned}
$$

1 wrote 2 during class but it should be 4

Average value
average value of numbers

$$
\text { average }=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

average value of $y=f(x)$ on $[a, b]$

average value of $z=f(x, y)$ on region R

This height is the average value of f on R

$$
\frac{\iint_{R} f(x, y) d A}{\text { Area of } R}
$$

ex) Evaluate each integral over the region $R=[0,1] \times[0,2]$ by interpreting it geometrically.
(a) $\iint_{R} 5 d A$

10.
(b) $\iint_{R}-5 d A$
 .-10
(c) $\iint_{R}^{\infty} 3 y d A$

(d) $\iint_{R} \sin (\pi x) d A$.

Area of one "hump." of

- $4 / \pi$
(e) $\iint_{R} 1-y d A$

12.2 Iterated integrals

How do you compute $\iint_{R} f(x, y) d A$ without interpreting it geometrically?
Example. $2(d)$ in 12.1 gives us a hint
$L(d) \cdot \iint_{R} \sin (\pi x) d A^{\circ}$

Area of one "hump" of \sin curve $=\int_{0}^{1} \sin \pi x d x=\frac{2}{\pi}$.
$.4 / \pi$

In this example, we computed the area of one slice by doing $\int_{0}^{1} \sin \left(\pi_{x}\right) d x$, and then "dragging". the slice along the y-axis by 2 units to fill the desired volume. In other words,

$$
\begin{aligned}
\iint_{R} \sin (\pi x) d x & =\int_{0}^{2}\left(\int_{0}^{1} \sin (\pi x) d x\right) d y \\
e x 1) \int_{0}^{3} \int_{1}^{2} x^{2} y d y d x & =\int_{0}^{3} x^{2}\left(\int_{1}^{2} y d y\right) d x \\
& \left.=\int_{0}^{3} x^{2}\left[\frac{1}{2} y^{2}\right]_{y=1}^{y^{2}} d x+2\right) \int_{1}^{2} \int_{0}^{3} x^{2} y d x d y=\int_{1}^{2}\left[\frac{1}{3} x^{3} y\right]_{x=0}^{x=3} d y \\
& =\int_{0}^{3} \frac{3}{2} x^{2} d x \\
& =\left[\frac{1}{2} x^{3}\right]_{x=0}^{x=3} \\
& =[27 / 2
\end{aligned}
$$

Fubini's Theorem.

If $f(x, y)$ is continuous on the rectangle. $[a, b] \times[c, d]$, then

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) \cdot d x d y
$$

monday October is
Reminders

- Study for Quiz 4 (practice problems posted in Resources).
- WebAssign 12.2.
- HW.8, section 12.2 and problem A2
12.2 Iterated integrals (cont)

Do warmup Zoom poll
ex) Evaluate $\iint_{R} y \sin (x y) d A$ where $R=[1,2] \times[0, \pi]$
Is $\iint_{0}^{0} y \sin (x y) d y d x$ or $\iint_{0} y \sin (x y)^{\circ} d y d x$ easier to compute?

- \uparrow.
looks like int
by parts,
ing $d y$.

$$
\begin{aligned}
& \int_{-}^{2} \int_{0}^{\pi} y \sin (x y) d y d x \\
& u=y \quad d r=\sin (x y) d y \\
& d u=d y \quad v=-\frac{\cos (x y)}{x} . \\
& \int_{1}^{20}\left(\left[\frac{-y \cos (x y)}{x}\right]_{y=0}^{y=\pi}-\int_{0}^{0 \pi}-\frac{1}{x} \cos (x y) d y\right) d x \\
& \int_{1}^{2}\left(-\frac{\pi}{x} \cos (\pi x)+\frac{i}{x^{2}}[\sin (x y)]_{y=0}^{0 y}\right) \quad d x . \\
& \int_{1}^{2}\left(-\frac{\pi}{x} \cos (\pi x)+\frac{1}{x^{2}} \sin (\pi x)\right) d x \\
& u=-\frac{1}{x} \quad d v=\pi \cos \pi x d x \text {. } \\
& d u=\frac{1}{x^{2}} d x \quad v=\sin \pi x \\
& \text { - }\left[\frac{-i}{x} \sin \pi x\right]_{1}^{2}-\int_{1}^{2} \frac{1}{x_{0}^{2}} \sin \pi x d x+\int_{6}^{2} \frac{1}{x^{2}} \sin \pi x d x \\
& -\frac{1}{2} \sin (2 \pi)+\sin \pi=0
\end{aligned}
$$

Integrating $d y d x$

Integrating $d x d y$.

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{1}^{2} y \sin (x y) d x d y \\
& \int_{0}^{\pi}[-\cos (x y)]_{x=1}^{x=2} d y \\
& \int_{0}^{\pi}-\cos (2 y)+\cos (y) d y \\
& {\left[-\frac{1}{2} \sin (2 y)+\sin (y)\right]_{0}^{\pi}}
\end{aligned}
$$

\square

Key idea: pick easy order of integration whenever possible.
ex 4) [section 12.2 prob 23, closely related to HW prob \# 24]
Sketch the solid whose volume is given by the iterated integral $\int_{0}^{1} \int_{0}^{1} 4-x-2 y d x d y$
The function $z=4-x-2 y$ is a plane.
The domain of integration is a square, so plug in the corners of the square to helps sketch.

$$
\begin{aligned}
& (0,0), \\
& (0,1), \\
& z=4 \\
& (1,0), \\
& (1,1), \\
& (0) \\
& =3
\end{aligned},
$$

ex 4) Find the volume of the solid enclosed by the surface $z=x \sec ^{2} y$ and the planes $z=0, x=0, x=2, y=0$, and $y=\pi / 4$

Domain of integration

know. x $\sec ^{2} y$. 20 . on this domain, even though. I don't know what. the graph looks like.

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{\pi / 4} x \sec ^{2} y d y d x & =\int_{0}^{2} x[\tan y]_{y=0}^{y=1 / 4} d x \\
& =\int_{0}^{2} x d x \\
& =2
\end{aligned}
$$

Concept

12.3 Double integrals over general regions

If the domain of integration is more. complicated than a rectangle, then we may need functions to serve as the bounds of the integral instead of using numbers only.
ex 1) Find the volume of the solid under the plane $x+2 y-z=0$ and above $z=0$, bounded by $y=x$ and $y=x^{4}$.

Domain of integration

Function values at .corners: : (0,0) $\quad z=0$

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{1} \int_{x^{24}}^{x} x+2 y d y d x \\
& =\int_{0}^{1}\left[x y+y^{2}\right] y_{y=x^{4}}^{y=x} d x \\
& =\int_{0}^{1}\left(x^{2}+x^{2}\right)^{0}-\left(x^{5}+x^{8}\right) d x \\
& =\int_{0}^{1} 2 x^{2}-x^{5}-x^{8} d x \\
& =\left[\frac{2}{3} x^{3}-\frac{1}{6} x^{6}-\frac{1}{9} x^{9}\right]_{0}^{1} \\
& =\frac{12}{18}-\frac{3}{18}-\frac{2}{18}
\end{aligned}
$$

The solid

(check: After completing the integral with respect to y, there should only be x 's left.)

$$
=7 / 18
$$

(Check: Since we are computing a definite integral, your final answer - must be a number)

Note: The other order of integration will also work.

$$
\int_{0}^{1} \int_{y^{0}}^{1 y^{1 / 4}} x+2 y d x d y=7 / 18
$$

ex 2) Evaluate. $\iint_{D} 1 d A$ for the region $D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$.

Domain of integration

The slices themselves have y-coordinates from -2 to 2
A typical "slice" of the domain has an x-coordinate that starts at $=\sqrt{4-y^{2}}$ and ends at $\sqrt{4-y^{2}}$.

The integral.

$$
\begin{align*}
\iint_{D}^{0} 1 d A & =\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} 1 d x d y \tag{1}\\
& =\int_{-2}^{2}[x]_{x=-\sqrt{4-y^{2}}} d y \tag{2}\\
& =\int_{-2}^{2} \sqrt{4-y^{2}}-\left(-\sqrt{4-y^{2}}\right) d y \tag{3}\\
& =\int_{-2}^{2} 2 \sqrt{4-y^{2}} d y \tag{4}\\
& =1
\end{align*}
$$

Ponder.this: Why is the answer to example 2 equal to. the area of the circle?
Notice that in equation (3), after phagzing in our bounds for x, we have $\int_{\text {bottom }}^{\text {top }}$ (right fyn) - (kef f on) dy This is exactly. how we computed areas between curves in. single-variable call!

The integral $\iint_{D} 1 d A$ has two geometric meanings

- $\iint_{D} 1 d A=$ area of the region D
- $\iint_{D} 1 d A$ = volume of "Cylinder" with base D. and height. 1.

This principle also held in single-variable call

$$
\int_{a}^{b} 1 d x=b-a=\text { length of interval }[a, b]=\text { area under } y=1 \text { from } x=a \cdot \text { to } x=b
$$

Thought for sleepless nights: What if the domain of integration" is a 3-dimensional solid? (coming soon in 12.7)
ex 3) Evaluate the double integral $\iint_{D} \sin \left(y^{2}\right) d A$. for the triangular region D. with vertices $(0,0),(0,2)$, and. $(1,2)$. Write two integrals, one for each order of integration, and evaluate by pocking the more convenient order.

Domain of integration

Integrating dy $d x$

A typical slice has a y-coordinate from. $2 x$ to 2 .

The x-coordinate of the first slice is 0 . and the. last. slice is at $x=1$

$$
\int_{0}^{1} \int_{2 x}^{2} \sin \left(y^{2}\right) d y d x
$$

Evaluating the integral.

$$
\begin{aligned}
& \int_{0}^{2} \int_{0}^{\frac{1}{2} y} \sin \left(y^{2}\right) d x d y= \int_{0}^{2}\left[x \sin \left(y^{2}\right)\right]_{x=0}^{x=\frac{1}{2} y} d y \\
&= \int_{0}^{2} \frac{1}{2} y \sin \left(y^{2}\right) d y \\
& u=y^{2} d u=2 y d y \\
&= \int_{0}^{4} \frac{1}{4} \sin (u) d u \\
&=-\frac{1}{4}[\cos u]_{u=0}^{2=} \\
&=-\frac{1}{4}(\cos 4-1)
\end{aligned}
$$

Tuesday October 13
Reminders

- [Important D]. Do. Quiz 4 tonight, 7-10 pm.
- Set a timer.
- Proctorio check
12.3 Double integrals over general regions (cont)
ex 4) Sketch the region of integration and change the order of integration

$$
\int_{1}^{2} \int_{0}^{\ln x} f(x, y) d y d x
$$

Draw $x=1, x=2, y=0, y=\ln x$

Current order of integration

$$
\int_{1}^{2} \int_{0}^{\ln x} f(x, y) d y d x
$$

A typical slice has y-cord
starting at. 0 going to $\ln x$

The slices start with x-coorg 1 and end with x-coorg 2 .

Reminders

- Compile HW8 for Andre
- Submit. Quiz 4 by 10 ppm (not midnight!)
- WebAssign 12.3, HW9 . section. 12.3

Marlin seems very chill. I think he'd be a good hang

They are all great!

The penguin was also awesome, and oh! the Corona virus made me laugh, but Marlin the Turtle wins for intricacy + making me laugh

These graphs were so cool!!!!!

They were all so good it's impossible to actually choose my favorite!
(2)
muh-muh muh-muh, muh-muh-muh, muh-muh

12.4 Double integrals in polar coordinates

For a double integral. $\iint_{D} f d A$, the " $d A$ " represents an infinitesimal bit of area. In Cartesian coordinates, a tiny increase in x by Δx and a tiny increase in y by Δy gives a tiny, patch of area $\triangle A$ equal. to $\Delta x \cdot \Delta y$. So it is sensible that $d A=d y d x$ or $d x d y$

$$
\begin{aligned}
\text { Ara } & =\left[\pi(r \Delta \Delta r)^{2}-\pi r^{2}\right] \frac{\Delta \theta}{2 \pi} \\
& =\cdots \\
& =r \Delta r \Delta \theta^{\circ}
\end{aligned}
$$

But. in polar coordinates, a tiny increase in r. and in θ doesn't form a rectangle! So if you want to use polar coordinates, $d A \neq d r d \theta$. The correct interpretation of $d A$ in polar is $d A=r d r d \theta$.
ex 2) Convert $\iint_{D} f(x, y) d A$ to polar coordinates for the domain D.
D is the region inside $r=3+2 \sin \theta$ and outside $r=2$, depicted below.

Find intersection of curves

$$
\begin{aligned}
& 2=3+2 \sin \theta \\
& -\frac{1}{2}=\sin \theta \\
& \theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}
\end{aligned}
$$

Write integral

$$
\int_{-\frac{\pi}{6}}^{\frac{7 \pi}{6}} \int_{2}^{3+2 \sin \theta} f_{0}(r \cos \theta, r \sin \theta) r d r d \theta
$$

ex 3) Convert $\int_{0}^{2} \int_{0}^{\sqrt{2 x x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ to polar and evaluate

Domain of integration
$x=0$,
$x=2$
$y=0$ 。

$$
\begin{aligned}
y=\sqrt{2 x-x^{2}} \Rightarrow & y^{2}=2 x-x^{2} \\
& y^{2}+x^{2}-2 x=0 \\
& y^{2}+x_{0}^{2}-2 x+1=1 \\
& y^{2}+(x-1)^{2}=1
\end{aligned}
$$

circle at $(1,0), r=1$.
convert $y^{2}+(x-1)^{2}=1$ to polar.

$$
\begin{aligned}
& r_{0}^{2} \sin ^{2} \theta+r^{2} \cos ^{2} \theta-2 r \cos \theta=0 \\
& r_{0}^{2}-2 r \cos \theta=0 \\
& r_{0}(r-2 \cos \theta)=0
\end{aligned}
$$

$r=0$ is a single point and clearly not the circle we want

$$
r=2 \cos \theta
$$

$\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} \cdot r \cdot r d r d \theta$ starting at O going out to $2 \cos \theta$

The first slice is given by $\theta=0$ and the last by $\theta=\pi / 2$.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{2} d r d \theta & =\int_{0}^{\pi / 2}\left[\frac{1}{3} r^{3}\right]_{0}^{2} \cos \theta d \theta \\
& =\frac{8}{3} \int_{0}^{\pi / 2} \cos ^{3} \theta d \theta \\
& =\frac{8}{3} \int_{0}^{\pi / 2} \cos \theta\left(1-\sin ^{2} \theta\right) d \theta \\
& =\frac{8}{3} \int_{0}^{1} 1-u^{2} d u=\frac{16}{9}
\end{aligned}
$$

ex) Find the volume under the cone $z=\sqrt{x^{2}+y^{2}}$ and above the disk $x^{2}+y^{2} \leq 4$

Sketch

In rectangular: $\iint_{D} \sqrt{x^{2}+y^{2}}-0 d A$ In polar: $\int_{0}^{2 \pi} \int_{0}^{2} r^{0} \cdot \dot{r} d r d \theta$

Evaluate $\int_{0}^{2 \pi} \int_{0}^{2} \dot{r}^{2} d r d \dot{\theta}$

$$
\begin{align*}
& =\int_{0}^{2 \pi}\left[\frac{1}{3} \dot{r}^{3}\right]_{0}^{2} d \dot{\theta} \tag{1}\\
& =\int_{0}^{2 \pi} \frac{8}{3} d \theta \\
& =\frac{16 \pi}{3}
\end{align*}
$$

Domain of integration

Computational trick: Notice how $\int_{0}^{2 \pi} 1 d \theta=2 \pi$? In equation (1), observe that the inner integral $\int_{0}^{2} r^{2} d r$. will not contain θ at all. We can use this fact as a shortcut.

$$
\int_{0}^{2 \pi} \int_{0}^{2} r^{2} d r \frac{d \dot{\theta}}{c}=2 \pi \int_{0}^{2} r^{2} d r
$$

ex 5) Evaluate $\iint_{R}(x+y) d A$ where R is the region to the left of the y-axis between $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Domain of integration

The integral

$$
\begin{aligned}
& \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \int_{1}^{2}(r \cos \theta+r \sin \theta) r d r d \theta \\
& \int_{\pi / 2}^{3 \pi / 2} \int_{1}^{2} r^{2}(\cos \theta+\sin \theta) d r d \theta \\
& \int_{\pi / 2}^{3 \pi / 2}\left[\frac{1}{3} r^{3}(\cos \theta+\sin \theta)\right]_{1}^{2} d \theta
\end{aligned}
$$

$$
\frac{7}{3} \int_{\pi / 2}^{3 \pi / 2} \cos \theta+\sin \theta d \theta
$$

$$
\frac{7^{\circ}}{3}[\sin \dot{\theta}-\cos \theta]_{\pi / 2}^{3 \pi / 2}
$$

$$
\frac{7}{3}\left[\begin{array}{cc}
-1 & (-1)
\end{array}\right]=\frac{-14}{3}
$$

Friday October 16
Reminders

- AU Week 8. WebAssign due Sun before midnight
- Written. HW. 9. section 12.4 and A1, A2
- Review equations of surfaces

General advice for double integrals

- Draw the domain of integration.
- Draw the 3D. view, if applicable.
- The inner bounds describe a typical slice.

The outer bounds describe where the slices stop and start.

Name: \qquad

1. Sketch the region of integration for $\int_{0}^{\pi} \int_{0}^{x} y \sin x d y d x$.

2. Sketch the region of integration for $\int_{0}^{2} \int_{0}^{y^{2}} y^{2} x d x d y$.

3. Evaluate the following integral by reversing the order of integration: $\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{2+x^{3}} d x d y$

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{x^{2}} \sqrt{2+x^{3}} d y d x \\
& \int_{0}^{1}\left[y \sqrt{2+x^{3}}\right]_{y=0}^{y=x^{2}} d x \\
& \int_{0}^{1} x^{2} \sqrt{2+x^{3}} d x \\
& \frac{1}{3} \int_{2}^{3} \sqrt{u} d u \\
& \frac{2 \sqrt{3}}{3}-\frac{4 \sqrt{2}}{9}
\end{aligned}
$$

4. Set up, but do not evaluate, an iterated integral for the volume below the graph of $f(x, y)=25-x^{2}-y^{2}$ and above the plane $z=16$.

$$
\begin{aligned}
& \int_{\substack{\text { circle of } \\
\text { radius }}} 25-x^{2}-y^{2} d A \\
& \int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} 25-x^{2}-y^{2} d y d x \\
& \text { (polar is better!) } \\
& \int_{0}^{2 \pi} \int_{0}^{3}\left(25-r^{2}\right) r d r d \theta=\frac{369 \pi}{2}
\end{aligned}
$$

5. Find the volume under the graph of $2 x+y+z=4$ in the first octant.
$z=4-2 x-y$
Domain of integration

$\int_{0}^{2} \int_{0}^{4-2 x} 4-2 x-y d y d x \quad 0 r \int_{0}^{4} \int_{0}^{\frac{4-y}{2}} 4-2 x-y d x d y$

6. Evaluate the integral $\iint_{D} x y d A$, where D is the disk with center $(0,0)$ and radius 3 , by changing to polar coordinates.

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{3}(r \cos \theta)(r \sin \theta) r d r d \theta \\
& \int_{0}^{2 \pi} \int_{0}^{3} r^{3} \cos \theta \sin \theta d r d \theta
\end{aligned}
$$

7. Use polar coordinates to find the volume of the solid below the paraboloid $x^{2}+y^{2}+z=16$ and above the $x y$-plane.

$$
\int_{0}^{2 \pi} \int_{0}^{4}\left(16-r^{2}\right) r d r d \theta
$$

$$
128 \pi
$$

8. Evaluate the integral $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \sin \left(x^{2}+y^{2}\right) d y d x$ by converting to polar coordinates.

$$
\begin{aligned}
& \text { Domain of integration } \quad \int_{r^{y} y=\sqrt{9-x^{2}}}^{\pi} \int_{0}^{3} \sin \left(r^{2}\right) \cdot r d r d \theta \quad\binom{u=r^{2}}{d u=2 r d r} \\
& \xrightarrow[-3]{\substack{1=0}} \\
& \frac{1}{2} \int_{0}^{\pi} \int_{0}^{9} \sin (u) d u d \theta \\
& \frac{1}{2} \int_{0}^{\pi}[-\cos u]_{u=0}^{u=9} d \theta \\
& \frac{\pi}{2}(1-\cos (9))
\end{aligned}
$$

9. Evaluate the integral $\int_{0}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{0} x^{2} y d x d y$ by converting to polar coordinates.

$$
\begin{aligned}
& \int_{\pi / 2}^{\pi} \int_{0}^{a} r^{2} \cos ^{2} \theta \cdot r \sin \theta \cdot r d r d \theta \\
& \int_{\pi / 2}^{\pi} \int_{0}^{a} r^{4} \cos ^{2} \theta \sin \theta d r d \theta \\
& \left.\int_{\pi / 2}^{\pi} \cos ^{2} \theta \sin \theta\left[\frac{1}{5} r^{5}\right]_{r=0}^{r=a} d \theta \quad \frac{1}{3} u^{3}\right]_{-1}^{0} \\
& \frac{a^{5}}{5} \int_{\pi / 2}^{\pi} \cos ^{2} \theta \sin \theta d \theta \quad\binom{u=\cos \theta}{d u=-\sin \theta d \theta} \\
& -\frac{a^{5}}{5} \int_{0}^{-1} u^{2} d u=\frac{a^{5}}{15}
\end{aligned}
$$

10. Evaluate the integral $\int_{0}^{1} \int_{y}^{\sqrt{2-y^{2}}}(x+y) d x d y$ by converting to polar coordinates.

$$
\begin{aligned}
& x=\sqrt{2-y^{2}} \\
& x^{2}=2-y^{2} \\
& x^{2}+y^{2}=2
\end{aligned}
$$

$$
\begin{gathered}
\int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}}(r \cos \theta+r \sin \theta) r d r d \theta \\
\int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}} r^{2}(\cos \theta+\sin \theta) d r d \theta \\
\int_{0}^{\pi / 4}(\cos \theta+\sin \theta)\left[\frac{1}{3} r^{3}\right]_{r=0}^{r=\sqrt{2}} d \theta \\
\frac{2 \sqrt{2}}{3} \int_{0}^{\pi / 4} \cos \theta+\sin \theta d \theta=\frac{2 \sqrt{2}}{3}
\end{gathered}
$$

11. (Challenge) Evaluate the integral $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ by converting to polar coordinates.

Check-in 13

Reverse the order of integration for $\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x$

Monday October 19
Reminders

- WebAssign 12.5
- HW.9, section 12.5
- Study. for Check-in 14 (use Oct 16 worksheet)
12.5 Applications of double integrals

The double integral $\iint_{D} f d A$. has many interpretations. Today we will summarize some important ones.
1). $\iint_{D} f d A$ is the volume under the surface $z=f(x, y)$, over the region $D(f i g, 1)$.
2) If $f(x, y)=1$, then $\iint_{D} 1 d A=$ area of D
3)

If $f(x, y)=$ density of something at a point (x, y), , new idea. then $\iint_{D} f d A=$ total amount of that thing.
ex 1) If $\rho(x, y)$ is the population density at point (x, y), then the total population on a region D is $\iint_{D} \rho(x, y) d A$
ex 2) If $\rho(x, y)$ is the population density at point (x, y), then the total population on a region D is $\iint_{D} \rho(x, y) d A$
ex 3). Let $\rho(x, y)=y^{2}$ be the mass density, measured in $\mathrm{g} / \mathrm{cm}^{2}$, of D, a metal disk of radius 1 cm centered at the origin.
a) Compute the mass of the disk. Include units

Domain of integration

$$
\begin{aligned}
& \begin{aligned}
\text { mass } & =\iint_{D} \rho(x, y) d A \\
& =\int_{-1}^{10} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} y^{2} d y d x \quad O R \quad \int_{0}^{2 \pi} \int_{0}^{1} r^{2} \sin ^{2} \theta \cdot r d r d \theta
\end{aligned} \\
& \int_{0}^{2 \pi} \int_{0}^{-1} r^{3} \sin ^{2} \theta d r d \theta \\
& \frac{1}{4} \int_{0}^{2 \pi} \sin ^{2} \theta d \dot{\theta} \\
& \frac{1}{4} \int_{0}^{2 \pi} \frac{1}{2}(1-\cos (2 \theta)) d \dot{\theta}
\end{aligned}
$$

4) If $\rho(x, y)$ is the mass density at point . x, y) on some. thin flat object D (called a lamina), then
$M_{x}=$ moment of the lamina about the x-axis $=\iint_{D} y \cdot \rho(x, y) d A$
$M_{y}=$ moment of the lamina about the y-axis $=\iint_{D} x \cdot \rho(x, y) d A$

$$
m=\text { mass }=\iint_{D} \rho(x, y) d A^{0}
$$

$(\bar{x}, \bar{y})=$ coordinates of the center of mass, where $\bar{x}=\frac{M_{y}}{\text { mass }}$ and $\bar{y}=\frac{M_{x}}{\text { mass }}$
ex 4) A semicircular lamina has, at any point (x, y), density proportional to the distance from the. Center of the circle. Find the center of mass of the lamina.

For a point $(r, \theta), . \rho=k r$.

$$
\begin{aligned}
& m_{0}=\iint_{D} \rho d \dot{D}=\int_{0}^{0} \int_{0}^{a} k r \cdot r d r d \theta=\frac{1}{3} k \pi a^{3} \\
& M_{0}=\iint_{D} y \cdot \rho d A=\int_{0}^{\pi} \int_{0}^{a} r \sin \theta \cdot k r \cdot r d r d \theta=\frac{1}{2} a^{4}
\end{aligned}
$$

$M_{y}=\iint_{0} x \cdot \rho d A$. Notice ρ is symmetric across the y-axis and the lamina is also symmetric across the y-axis, but. x becomes. x.on the other side of the y-axis. Based on these observations, $\iint_{D} x \cdot \rho d A=O$.

$$
\text { center of mass }=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)=\left(0, \frac{3 a}{2 \pi_{0}}\right) \quad \approx(0,0.48 a)
$$

ex 5) Where is the center of mass of this balancing eagle toy?
Can you guess where there weights inside the toy??

12.6 Surface area

First let's review two facts

Fact 1: For vector -valued, two-parameter surfaces $\vec{r}(u, v)$, we know the partial derivatives \vec{r}_{u} and \vec{r}_{v} are vectors - tangent to .the surface (ie. they lie in the tangent plane). [from notes, on Sept 22, section 11.3]

Fact 2: $|\vec{a} \times \vec{b}|$ is a scalar that represents the area of the parallelogram with sides \vec{a} and \vec{b} [from notes on Aug 31, , section 9.4]

We can use these facts to see that a tiny patch of surface area on a parametrized surface $\vec{r}(u, v)$ is approximated by. $\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v$.

surface with parametrization $\dot{\vec{r}}(u, v)^{\circ}=\langle x, y, z\rangle$

The surface area of a parametrized surface. $\vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$. with u, v in a region D is

$$
\iint_{D}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A \quad\left[\text { alternative notation : } \iint_{D} 1 d S \text { where } d S=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A\right]
$$

ex 1) Find the surface area of a sphere of radius a.

Step 1: Parametrize surface.

$$
\vec{r}\left(\theta_{0} \phi\right)=\langle a \sin \phi \cos \theta, a \sin \phi \sin \theta, a \cos \phi\rangle ., 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi
$$

Step. 2: Compute area of tiny. patch $\left|\vec{r}_{\theta} \times \vec{r}_{\phi}\right|$.

$$
\begin{aligned}
\vec{r}_{\theta} & =\langle-a \sin \phi \sin \theta, a \sin \phi \cos \theta, 0\rangle \\
\vec{r}_{\phi} & =\langle a \cos \phi \cos \theta, a \cos \phi \sin \theta, a \sin \phi\rangle \\
\vec{r}_{\theta} \times \vec{r}_{0} & =\left\langle-a^{2} \sin ^{2} \phi \cos \theta,-a^{2} \sin ^{2} \phi \sin \theta,-a^{2} \sin \phi \cos \phi \sin ^{2} \theta-a^{2} \sin \phi \cos \phi \cos ^{2} \theta\right\rangle \\
& =\left\langle-a^{2} \sin ^{2} \phi \cos \theta,-a^{2} \sin ^{2} \phi \sin \theta,-a^{2} \sin \phi \cos \phi\right\rangle \\
\left|\vec{r}_{\theta_{0}} \times \vec{r}_{\phi}\right| & =\sqrt{a^{4} \sin ^{4} \phi \cos ^{2} \theta+a_{0}^{4} \sin ^{4} \phi \sin ^{2} \theta+a^{4} \sin ^{2} \phi \cos ^{2} \phi} \\
& =\sqrt{a^{4} \sin ^{4} \phi+a^{4} \sin ^{2} \phi \cos ^{2} \phi} \\
& =\sqrt{a^{4} \sin ^{2} \phi\left(\sin ^{2} \phi+\cos ^{2} \phi\right)} \\
& =a^{2} \sin ^{2}
\end{aligned}
$$

Step 3: Integrate

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} a^{2} \sin \phi d \phi d \theta=a^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi d \phi d \theta=4 \pi a^{2}
$$

Tuesday October 20
Reminders

- WebAssign 12.6
- Written HW section 12.6 and A1, A2
12.6 Surface area (cont)

Recap: The formula for surface area of a surface $\vec{r}(u, v)$ is $\iint_{D} 1 d S^{\circ}=\iint_{u, v m D}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A$
ex 2) Let S be the part of the surface $z=1+3 x+2 y^{2}$, above the triangle with vertices $(0,0),(0,1)$, and $(2,1)$.
a). Write an integral that gives the volume under S and above $z=0$.

Domain of integration
Volume under. S

$$
\int_{0}^{2} \int_{\frac{1}{2 x}}^{1} 1+3 \hat{x}+2 \hat{y}^{2} d y d x
$$

b) Write an integral that gives the surface area of S and evaluate the integral.

$$
\begin{aligned}
& \dot{r}_{0}(s, t)=\left\langle s, t, 1+3 s+2 t^{2}\right\rangle \quad 0 \leq s \leq 2, \quad \frac{1}{2} s<t<1 \\
& \dot{r}_{s}=\langle 1,0,3\rangle \\
& \vec{r}_{t}=\langle 0,1,4 t\rangle \\
& \vec{r}_{s} \times \vec{r}_{t}=\langle-3,-4 t, 1\rangle \\
& \left|\vec{r}_{s} \times \vec{r}_{t}\right|=\sqrt{9+16 t^{2}+1} \\
& =\sqrt{10+16 t^{2}} \\
& \text { surface area of } S=\int_{0}^{20} \int_{\frac{1}{2}}^{1} \sqrt{10+16 t^{2}} d t d s
\end{aligned}
$$

Hard to evaluate, so switch order of integration

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2 t} \sqrt{10+16 t^{2}} d s d t \\
& \int_{0}^{1} 2 t \sqrt{10+16 t^{2}} d t \cdot\binom{u=10+16 t^{2}}{d u=32 t d t} \\
& \frac{1}{16} \int_{10}^{26} u^{1 / 2} d u \\
& \frac{i}{16} \cdot \frac{2}{3}\left[u^{3 / 2^{0}}\right]_{10}^{26}=\frac{26^{3 / 2}-10^{3 / 2}}{24} \approx 4.21
\end{aligned}
$$

Optional formula for surface area of a surface $z=f(x, y)$.

$$
\text { surface area }=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A
$$

This formula is the result of choosing your parametrization to be $\langle x, y, f(x, y)\rangle$.
It only works for functions of x and y, so it will not be useful! for surfaces that fail the "vertical line test", like spheres.
ex 3). Find the surface area of the surface created when the cylinder $y^{2}+z^{2}=1$ intersects the cylinder. $x_{0}^{2}+z^{2}=1$.

See youtu.be/B-3Ctumsf3k for a better demo of this shape.

Strategy: Find surface area of just one of the four panels and multiply by 4 at. the end. Step 1: parametrize one panel [Hint: The yellow panel on the positive y side is the part of Step 2 : compute $\left|\vec{r}_{u} \times \vec{r}_{v}\right|$. surface, $y=\sqrt{1-z^{2}}$. inside. $\left.x^{2}+z^{2}=1\right]$

Step 3: integrate $\iint_{\text {nd }}\left|\vec{r}_{n} \times \vec{r}_{v}\right| d A$

Check-in 14

Find the volume under the paraboloid. $z=x^{2}+y^{2}$ within the cylinder $x^{2}+y^{2} \leq 1, z \geq 0$.
Optional guidance.

a) Identify what part of the diagram we are interested in or draw your. own.
b) Draw the projection of the object onto the $x y$-plane.

c) Use the projection to wite bounds for a double integral. You may, use rectangular ($\iint f$ dydx or $\iint f$ dxdy $)$ or polar ($J \int_{\mathrm{f} \text { rare } \theta) \text {. }}$
d) Decide. what your integrand f should be
e) Integrate. Make sure your final answer is a number.

Wednesday October 21
Reminders

- Compile HW 9. for André
- [Thurs] Study for Check-in 15. - practice surface area.
12.6 Surface area (cont)

Let's explore what it means to integrate the function 1.

- For a single integral: $\int_{a}^{b} 1 d x$

This integral returns the value $b-a$, which is the length of the interval $[a, b]$.
[from single -variable calculus]

- For a double integral: $\iint_{D} 1 d A$

This integral returns the area of the region D. [from section 12.3]

- For a triple integral : $\iiint_{E} 1 d V$

This integral returns the area of the region D. [from section 12.7- the future, ooh]

Key concept.
The integral of the .function 1 produces the "size" of the domain. of. integration

The "size". must be appropriately interpreted as length, area. volume, etc.
ex 4) Compute the surface area of the part of $z=-3 x+7 y$ above the region D, where D is a blob of area 9 .

Parametrize, surface: $\vec{r}(p, q)=\langle p, q,-3 p+7 q\rangle$
Compute $\left|\vec{r}_{p} \times \vec{r}_{q}\right| . \vdots \vec{r}_{p}=\langle 1,0,-3\rangle$

$$
\begin{gathered}
\vec{r}_{q}=\langle 0,1,7\rangle \\
\left|\vec{r}_{p} \times \vec{r}_{q}\right|=\sqrt{3^{2}+(-7)^{2}+1^{2}}=\sqrt{59}
\end{gathered}
$$

Integrate over $D: \iint_{D} \sqrt{59} d A=\sqrt{59} \underbrace{\iint_{D} d A_{0}}_{\text {area of } D}=9 \sqrt{59}$
12.7 Triple integrals

For a lamina D, if the density at (x, y) is given by $\rho(x, y)$. then $\iint_{D} \rho(x, y) d A$ is the mass of the lamina.

- $\rho(x, y)$. gives density of tomato. mass at (x, y) $\iint_{\text {slice }} \rho(x, y) d A$ gives mass. of whole slice

But not every object is thin and flat! How do we find the mass of a.3D. object? By cutting up the solid into thin slices?.

$$
\text { total mass of tomato }=\int_{a}^{b}(\text { mass of eachslice }) d x
$$

This is already, a double integral

To compute a triple integral over a solid. V, slice it like so:

$$
\iiint_{E} f(x, y, z) d V=\int_{e}^{g} \int_{c(x)}^{d(x)} \begin{aligned}
& \frac{\int_{a(x, y)}^{b(x, y)} f(x, y, z)}{z \text { is the variable, }} \begin{array}{l}
x \text { and } y \text { are fixed }
\end{array} \\
& y \text { is the variable, } \\
& x \text { is fixed, } z \text { is gone }
\end{aligned}
$$

ex 1) Evaluate $\iiint_{E} 2 x d V$ where $E=\left\{(x, y, z) \mid 0 \leq y \leq 2,0 \leq x \leq \sqrt{4 y^{2}}, 0 \leq z \leq y\right\}$

- Draw. E, the domain of integration.

Draw typical slice of E.

Use typical slice to write two inner bounds.

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{y} \cdot 2 x \cdot d z d y d x & =\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} 2 x y d y d x \\
& =\int_{0}^{2} 2 x \cdot \frac{1}{2}\left[y^{2}\right]_{y=0}^{y=\sqrt{4-x^{2}}} d x \\
& =\int_{0}^{2} x\left(4-x^{2}\right) d x \\
& =\int_{0}^{2} 4 x-x^{3} d x \\
& =\left[2 x_{0}^{2}-\frac{1}{4} x^{4}\right]_{x=0}^{x=2} \\
& =8-4
\end{aligned}
$$

ex 2) Rewrite following integral as an equivalent iterated integral in the five other orders.

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x
$$

Draw domain of integration by drawing region given. by two outer integrals first.

(1) $d z d x d y$. (swap outer two variables of original integral)

Draw $x y$-projection.

$$
\int_{0}^{1} \int_{0}^{y^{2}} \int_{0}^{1-y} f(x, y, z) d z d x d y
$$

(2) $d y d z d x$ (swap inner. two variables of original integral)

Draw $z x$-projection

(3) $d y d x d z$ (swap outer two variables of (2)).

Draw xz-projection

Computational note: Switching the inner two or outer two variables is easier than switching, two non-adjacent variables
(4) $d x d y d z$ and .(5). $d x d z d y$ Draw yz-projection.

$$
\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{y^{2}} f(x, y, z) d x d y_{0} d z
$$

$\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{y^{2}} f(x, y, z) d x d z d y$

Friday October 23
Reminders

- All week. 9 WebAssign due Sunday before midnight
- Written. HW 10, section 12.7.
- Study for Quiz 5.

Recap: For a triple integral $\iiint f(x, y, z) d z d y d x$, we can write numerical bounds for the outermost. integral and progress inward. by adding further restrictions for the inner integrals
ex 3) Let E be the solid bounded. by $y=x^{2}+z^{2}$ and $y=4$.
a.) Draw E and a typical slice of E for a fixed z.

Typical slice

b.) Draw E and a typical slice of E for a fixed y.

c) Evaluate $\iiint_{E} \sqrt{x^{2}+z^{2}} d V$
$\int_{0}^{4} \cdot \int_{-\sqrt{y}}^{\sqrt{y}} \int_{-\sqrt{y-x^{2}}}^{\sqrt{y^{-x^{2}}}} \sqrt{x^{2}+z^{2}} d z d x d y$

Typical slice

ex 4) Rewrite $\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x$ in the five other orders of integration
(1) $d y d x d z$.

Flip. x, z in original integral

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-z}} \int_{0}^{1-x} f(x, y, z) d y d x d z
$$

(2) $d z d y d x$

Flip. y, z ins
original integral

$$
\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}} f(x, y, z) d z d y d x
$$

(3) $d z d x d y$.

Flip $x y$ in (z)

$$
\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1-x^{2}} f(x, y, z) d z d x d y
$$

(4) $d x d z d y$.

Flip x, z in (3)

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2 y-y^{2}} \int_{0}^{1-y} f(x, y, z) d x d z d y+\int_{0}^{1} \int_{2 y-y^{2}}^{1} \int_{0}^{\sqrt{1-z}} f(x, y, z) d x d z d y \\
& z=1-(1-y)^{2}=1-\left(1-2 y+y^{2}\right)=2 y-y^{2}
\end{aligned}
$$

(5) $d x d y d z$

Flip $y_{1} z$ in. (4)

$$
\begin{aligned}
& \int_{0}^{1} \int_{1+\sqrt{1-z}}^{1} \int_{0}^{1-y} f(x, y, z) d x d y d z+\int_{0}^{1} \int_{0}^{1+\sqrt{1-z}} \int_{0}^{\sqrt{1-z}} f(x, y, z) d x d y d z \\
& 0
\end{aligned}
$$

3D. graph

Check-in 15

Compute the surface area of the portion of $x=6=-y^{2}-z^{2}$ where $x \geq 2$.

$$
\begin{aligned}
S A & =\iint_{1} 1 d S \\
& =\iint_{0} \sqrt{1+f_{y}^{2}+f_{z}^{2}} d A \\
& =\iint_{0} \sqrt{1+(-2 y)^{2}+(-2 z)^{2}} d A \\
& =\int_{0}^{2 \pi} \sqrt{1+4\left(y_{0}^{2}+z^{2}\right)} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{1+4 r_{0}^{2}}: r d r d \theta \quad(y=r \cos \theta, z=r \sin \theta) \\
& =2 \pi\left[1\left(1+4 r^{2}\right)^{3 / 2} \cdot \frac{2}{3} \cdot \frac{1}{8}\right]_{r=0}^{r=2}
\end{aligned}
$$

- Domain of integration

Monday October 26
Reminders.

- Study. for Quiz 5

Class was cancelled for snow, we had a review. day for Quiz 5

Textbook section 12.7. prob 40
Find mass, center of mass of $E \quad w /$ density ρ $E=$ tetratedion bounded by $x=0, y=0, z=0, x+y+z=1, \rho(x, y, z)=y$

$x y$. projection.

$$
m=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} y \not d z d y d x
$$

Name: \qquad

1. Determine whether each statement is TRUE or FALSE
(a) $\int_{0}^{1} \int_{0}^{x} \sqrt{x+y^{2}} d y d x=\int_{0}^{x} \int_{0}^{1} \sqrt{x+y^{2}} d x d y$.
(b) If D is the unit disk centered at the origin, then $\iint_{D} f(x, y) d A=\int_{-1}^{1} \int_{-1}^{1} f(x, y) d y d x$.
(c) If D is the unit disk centered at the origin, then $\iint_{D} f(x, y) d A=\int_{0}^{2 \pi} \int_{0}^{1} f(r \cos \theta, r \sin \theta) d r d \theta$.
(d) The double integral $\iint_{D} d A$ is always positive.
(e) The triple integral $\iiint_{E} d V$ is always positive.
2. Evaluate the integral.
(a) $\int_{0}^{1} \int_{0}^{x} \cos \left(x^{2}\right) d y d x$
(b) $\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} y \sin x d z d y d x$
(c) $\iint_{D} \frac{y}{1+x^{2}} d A$ where $D=\left\{(x, y) \mid 0 \leq y \leq 1, y^{2} \leq x \leq y+2\right\}$
(d) $\iiint_{E} x y d V$ where $E=\{(x, y, z) \mid 0 \leq x \leq 3,0 \leq y \leq x, 0 \leq z \leq x+y\}$
(e) $\iint_{D}\left(x^{2}+y^{2}\right)^{3 / 2} d A$ where D is the region in the first quadrant bounded by the lines $y=0, y=\sqrt{3} x$ and $x^{2}+y^{2}=9$
(f) $\iiint_{E} y z d V$ where E lies above the plane $z=0$, below the plane $z=y$ and inside the cylinder $x^{2}+y^{2}=4$.
3. Find the volume of the solid tetrahedron with vertices $(0,0,0),(0,0,1),(0,2,0)$, and $(2,2,0)$.
4. Find the volume of the wedge cut from the cylinder $x^{2}+9 y^{2}=a^{2}$ by the planes $z=0$ and $z=m x$.
5. Sketch the solid whose volume is given by $\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{2-x-y} d z d x d y$
6. Find the surface area.
(a) The part of the plane $3 x+2 y+z=6$ that lies in the first octant.
(b) The part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$
7. A lamina D lies on the $x y$-axes bounded by the parabola $x=1-y^{2}$ and the coordinate axes in the first quadrant with density function $\rho(x, y)=y$. Find the center of mass of D.

$S A$	$=\iint_{1+z_{x}^{2}+z_{y}^{2}} \sqrt{1+z=x y}$
	$=\iint_{1}^{1+y^{2}+x^{2}} d A$
	$=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{1+r^{2}}(r) d r d \theta \quad$$1+r^{2}=u$ $2 r d r$$=d u$
	$=\frac{1}{2} \int_{0}^{2 \pi} \int_{1}^{2} u^{1 / 2} d u d \theta$

8. A lamina occupies a circular disk D whose center lines on the line $y=2$ and whose density is given by the function $\rho(x, y)=x^{2}+y^{2}$. Determine whether the following statements are true, false, or if not enough information is given.
(a) If the center of D is $\left(x_{0}, y_{0}\right)$ and the center of mass of the lamina is (\bar{x}, \bar{y}), then $\bar{x}>x_{0}$.
(b) If the center of D is $\left(x_{0}, y_{0}\right)$ and the center of mass of the lamina is (\bar{x}, \bar{y}), then $\bar{y}>y_{0}$.
9. Rewrite $\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x$ as an iterated integral in the order $d x d y d z$. all possible orders
10. Decide, without calculation, whether the integrals are positive, negative, or zero. Let D be the region inside the unit circle centered at the origin, let R be the right half of D, and let B be the bottom half of D.
(a) $\iint_{D} d A$
(b) $\iint_{R} 5 x d A$
(c) $\iint_{D} 5 x d A$
(d) $\iint_{B} y^{3}+y^{5} d A$
(e) $\iint_{D} \sin y d A$
(f) $\iint_{D} x y^{2} d A$

$$
\int_{0}^{1} \int_{0}^{1-z} \int_{-\sqrt{y}}^{\sqrt{y}} f d x d y d z
$$

$$
\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} \int_{0}^{1-y} f d z d x d y
$$

z

$$
\int_{0}^{1} \int_{-\sqrt{1-z}}^{\sqrt{1-z}} \int_{x^{2}}^{1-z} f d y d x d z
$$

$$
\int_{0}^{1} \int_{0}^{1-y} \int_{-\sqrt{y}}^{\sqrt{y}} f d x d z d y
$$

$$
\int_{-1}^{1} \int_{0}^{1-x^{2}} \int_{x^{2}}^{1-z} f d y d z d x
$$

Answers
(1) F, F, F, T, T
(2) (a) $(1 / 2) \sin (1)(b) 2 / 3$ (c) $(1 / 4) \ln 2$ (d) $81 / 2$ (e) $81 \pi / 5$ (f) $64 / 15$
(3) $2 / 3$
(4) $2 m a^{3} / 9$
(5) tetrahedron with corners $(0,0,0),(2,0,0),(0,2,0),(0,0,2)$
(6) (a) $3 \sqrt{14}$ (b) $(2 \pi / 3)(2 \sqrt{2}-1)$
(7) $(1 / 3,8 / 15)$
(8) C, A
(9) $\int_{0}^{1} \int_{0}^{1-z} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y, z) d x d y d$,
(10) (a) pos (b) pos (c) zero (d) neg (e) zero (f) zero

University of Colorado Boulder Math 2400, Midterm 3

Spring 2017

PRINT your NAME: \qquad

PRINT instructor's name: \qquad

SECTION \#: \qquad

Question	Points	Score
1	13	
2	16	
3	8	
4	8	
5	15	
6	8	
7	16	
8	16	
Total:	100	

- No calculators, cell phones, or other electronic devices may be used at any time during the exam.
- Show all of your reasoning and work for full credit, unless indicated otherwise. Use full mathematical or English sentences.
- You have 90 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- For multiple choice questions, circle the correct answer.
- Notation: following the book, we use boldface to denote vectors, e.g., \mathbf{a}, \mathbf{b} are vectors.

8. (16 points) Let S be the surface of the solid obtained by taking a section of the cylinder $x^{2}+y^{2}=1$ between the planes $z=2-y$ and $z=0$.
(a) (6 pts.) The upper face of S, the part lying in the plane $z=2-y$, may be parametrized by $\mathbf{r}(x, y)=\langle x, y, 2-y\rangle$, where $(x, y) \in\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Compute the surface area of that portion of the surface S.

$$
\begin{aligned}
& \iint \sqrt{1+z_{x}^{2}+z_{y}^{2}} d A \\
& \sqrt{1+0+1} d A \\
& \sqrt{2} \sqrt{\sqrt{1} d A}=\sqrt{2} \\
& \text { Area of circle }
\end{aligned}
$$

$$
\sqrt{2} \pi
$$

(b) (6 pts .) The portion of the surface S lying on the cylinder $x^{2}+y^{2}=1$ may be parametrized by $\mathbf{r}(\theta, z)=\langle\cos (\theta), \sin (\theta), z\rangle$. Find the bounds for θ and z and then calculate the surface area of that portion of S.

$$
\begin{aligned}
& \vec{r}_{\theta}=\langle\sin \theta, \cos \theta, 0\rangle \\
& \vec{r}_{z}=\langle 0,0,1\rangle \\
&\left|\vec{r}_{\theta} \times \vec{r}_{z}\right|=\sqrt{(\cos \theta)^{2}+(\sin \theta)^{2}+(0)^{2}} \\
&=1 \\
& \int_{0}^{2 \pi} \int_{0}^{2-\sin \theta} 1 \\
& \begin{array}{l}
(\operatorname{tap} r i m) \\
z=2-y \\
z=2-\sin \theta
\end{array} \\
&
\end{aligned}
$$

(c) $(4 \mathrm{pts}$.$) What is the total surface area of S$?

(a)
top
 side

Page 8 of 8
6. Consider the triple integral

$$
\int_{-1}^{1} \int_{0}^{\sqrt{4-2 x^{2}}} \int_{-\sqrt{4-2 x^{2}-z^{2}}}^{\sqrt{4-2 x^{2}-z^{2}}} x d y d z d x
$$

Without sketching the three-dimensional region of integration, use your understanding of changing the order of integration for double integrals to do the following.
(a) Change the order of integration to $d y d x d z$.

(b) Change the order of integration to $d x d y d z$.

$$
\begin{aligned}
& y^{2}=4-2 x^{2}-z^{2} \\
& y^{2}+2 x^{2}=4-z^{2} \\
& \text { ellipse }\left(0, \pm \sqrt{4-z^{2}}\right)\left(\pm \sqrt{\frac{4-z^{2}}{2}}, 0\right)
\end{aligned}
$$

$$
\int_{0}^{2} \int_{-\sqrt{4-z^{2}}}^{\sqrt{4-z^{2}}} \int_{-\sqrt{\frac{-z^{2}-y^{2}}{2}}}^{\sqrt{\frac{4-z^{2}-y^{2}}{2}}} x d x d y d z
$$

(c) Evaluate the triple integral in the easiest order.

$$
\int_{0}^{2} \int_{-\sqrt{4-z^{2}}}^{\sqrt{4-z^{2}}} \int_{-\sqrt{\frac{4-z^{2}-y^{2}}{2}}}^{\frac{\sqrt{4-z^{2}-y^{2}}}{2}} d x d y d z=\int_{0}^{\frac{1}{2}} \int_{-\sqrt{4-z^{2}}}^{2} \int^{\sqrt{4-z^{2}}}\left[x^{2}\right]_{x=}^{x=} d y d z
$$

Mon Tue revien

- Dilar motes
dA in rect is dydeor.
Wed sphenzerlo cyl practire
Correctums-exppan whyens:
in polaris rdido.
dV in rect is dzdydy
cyliratin in $r d r d \theta d z$
Spherial is $\rho^{2} \sin \phi \cdot d \rho d \theta d \phi$

Tuesday October 27
Reminders

- Important]. Do. Quiz 5 between 7 and 10 pm (a timer is recommended)
12.8 Triple integrals in cylindrical and spherical

Refresher on cylindrical and spherical. coordinates

Cylindrical coordinates.

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& r^{2}=x^{2}+y^{2}
\end{aligned}
$$

Spherical coordinates

$$
\rho^{2}=x^{2}+y^{2}+z^{2}
$$

$x=\rho \sin \phi \cos \theta$
$y=\rho \sin \phi \sin \theta$
$z=\rho \cos \phi$

Sketch each solid.
(a) $2 \leq r \leq 3$
$0 \leq \theta \leq 2 \pi$
$5 \leq z \leq 6$

(b). $4 \leq \rho \leq 5$.

$$
0 \leq \theta \leq \pi / 4
$$

$$
\pi / 4 \leq \phi \leq \pi / 2
$$

(c)

$$
\begin{aligned}
& 1 \leq x \leq 2 \\
& 4 \leq y \leq 5 \\
& 4 \leq z \leq 5
\end{aligned}
$$

The volume element $d V$ in rectangular coordinates is $d z d y d x$. The ting solid formed by moving x, y, and z by a small amount is a rectangular block, so the volume is $d z d y d x$.

The volume element $d V$ in cylindrical coordinates is rdrdodz. - The tiny solid formed by moving. r, θ, and z by a small amount. is a polar rectangle stretched upward by $d z$

The volume element $d V$ in spherical coordinates is $\rho^{2} \sin \phi d \rho d \theta d \phi$ The ny solid formed by moving ρ, θ, and ϕ by a small amount. is sh. ed like um... I don't know.

The triple integral $\iiint_{E} f(x, y, z) d V$ over solid E is

$$
\begin{aligned}
& \text { - (in rectangular) } \iiint_{\text {In rectangular }} f(x, y, z) d z d y d x \\
& \text { - (in cylindrical) } \iiint_{E \text { in cylindrical }} f(r \cos \theta, r \sin \theta, z) r d r d \theta d z \\
& \quad \begin{array}{l}
\text { (often } r d z d r d \theta \text { is useful) }
\end{array} \\
& \text { - (in spherical) } \iiint_{E \text { in spherical }} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \quad \rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

For Exercises 12-18, choose coordinates and set up a triple integral, including limits of integration, for a density function f over the region.
12.

13.

14.

15.

16. A piece of a sphere; angle at the center is $\pi / 3$.

17.

18.

17). $\int_{0}^{2} \int_{0}^{5} \int_{0}^{\frac{1}{5} y} f\left(x_{0}, y, z\right) d z d y d x$
18) $\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{r} f(r \cos \theta, r \sin \dot{\theta}, z) r d z d r d \dot{\theta}$

For the regions W shown in Problems 30-32, write the limits of integration for $\int_{W} d V$ in the following coordinates:
(a) Cartesian
(b) Cylindrical
(c) Spherical
30.

30), $\int_{0}^{1} \cdot \int_{0}^{\sqrt{1-x^{2}}} \cdot \int_{0}^{0} f(x, y, z) d z d y d x$

$$
\int_{0}^{\pi / 2} \cdot \int_{0}^{1} \int_{-\sqrt{1-r^{2}}}^{0} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

$$
\int_{\pi / 2}^{\pi} \int_{0}^{\pi / 2} \int_{0}^{1} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \theta) \rho^{2} \sin \phi d \rho d \theta d \phi
$$

31.

32.

$$
\int_{0}^{2 \pi} \int_{0}^{\frac{1}{\sqrt{2}}} \int_{r}^{\frac{1}{\sqrt{2}}} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

$$
\int_{0}^{\pi / 4} \int_{0}^{2 \pi} \int_{0}^{\frac{1}{\sqrt{2}} \sec \phi} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \theta) \rho^{2} \sin \phi d \rho \dot{d} \theta d \phi
$$

Wednesday October 28
Reminders

- Compile HW 10 for André
- Submit Quiz 5 corrections by 10 pm - why , not how
12.8 Triple integrals in cylindrical + spherical (cont)

Recap: The triple integral $\iiint_{E_{0}} f(x, y, z)$ aV over solid E is - (in rectangular) $\iiint_{\text {E in rectangular }}^{\circ} f(x, y, z) d z d y d x$

$$
\begin{aligned}
& \text { - (in cylindrical) } \iiint_{\text {En cylindrical }} f(r \cos \theta, r \sin \theta, z) \quad r d r d \theta d z \\
& \text { (Often } r^{\circ} d z d r d \theta^{\circ} \text { is useful) } \\
& \text { - (in spherical) } \iiint_{E \text { in spherical }} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \cdot \rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

Ex 1 Let E be the solid inside the cone $z=4 \sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=9$. If the density at any point in E is proportional to z, find the mass of E. [Ans: $\frac{81 \mathrm{k} \mathrm{\pi}}{68}$]

morse

In rectangular: $\rho(x, y, z)=\dot{k} z$.

$$
m=\int_{-3 / \sqrt{17}}^{3 / \sqrt{17}} \cdot \int_{-\sqrt{9-x^{2}}}^{\sqrt{\frac{9}{7}-x^{2}}} \cdot \int_{4 \sqrt{x^{2}+y^{2}}}^{\sqrt{9-x^{2}-y^{2}}} k z d y d x
$$

$x y$.projection

In cylindrical: $\rho(r, \theta, z)=k z$.

$$
m=\int_{0}^{2 \pi} \cdot \int_{0}^{3 / \sqrt{17}} \cdot \int_{4 r}^{\sqrt{9-r^{2}}} \cdot k z \cdot r d z d r d \theta
$$

changed name of density to σ.
In spherical: $\quad \delta(\rho, \theta, \phi)=k \rho \cos \phi$

$$
m=\int_{0}^{\arcsin \left(\frac{1}{\sqrt{17}}\right)} \cdot \int_{0}^{2 \pi} \int_{0}^{3} \cdot k \rho \sin \phi: \rho^{2} \sin \phi d \rho d \theta d \phi
$$

$y z$ projection

$$
\sin \phi=\frac{1}{\sqrt{17}}
$$

Ex 2 A solid E lies within the cylinder $x^{2}+y^{2}=4$, above the paraboloid $z=4-x^{2}-y^{2}$, and below the plane $z=10$. If the density of E at any point is proportional to its distance from the axis of the cylinder.

(a) Find the mass of E. [Ans: $\left.\frac{224 k \pi}{5}\right]$ Practice for Quiz 6
(b) Find the volume of the solid E. [Ans: 32 $]$ Practice for Quiz 6
(c) Find the area of the bottom surface of E, i.e., the paraboloid within the cylinder. [Ans: $\frac{1}{6}(17 \sqrt{17}-1) \pi$] Practice for Quiz 5.
(b)

$$
V=\iiint_{E} 1 d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{4-r^{2}}^{10} r d z d r d \theta
$$

(a) $\rho_{0}=k \sqrt{x_{0}^{2}+y^{2}} \cdot 1 \quad m_{0}=\iiint_{0} k \sqrt{x^{2}+y^{2}} d V$

$$
=\int_{0}^{2 \pi} \int_{0}^{2} \int_{4-r^{2}}^{10} i r \cdot r d z d r d \theta
$$

Ex 3 Use cylindrical coordinates to evaluate $\iiint_{E} x \mathrm{~d} V$, where E is enclosed by the planes $z=0$, $z=x+y+10$, and by the cylinders $x^{2}+y^{2}=16, x^{2}+y^{2}=36$. [Ans: 260π]

Fig for Ex 3
xy projection

$$
\iiint_{E}^{0} x \cdot d V=\int_{0}^{2 \pi} \cdot \int_{4}^{6} \cdot \int_{0}^{r \cos \theta+r \sin \theta+10} \cdot r \cos \theta \cdot r d z d r d \theta
$$

Ex 4 Evaluate the iterated integral by changing to cylindrical coordinates:

$$
\int_{-5}^{5} \int_{0}^{\sqrt{25-x^{2}}} \int_{0}^{25-x^{2}-y^{2}} \sqrt{x^{2}+y^{2}} \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x \quad\left[\text { Ans: } \frac{1250 \pi}{3}\right]
$$

Fig for Ex 4

- my projection

$$
\begin{aligned}
& -5_{0} \leq x \leq 5 \\
& 0 \leq y \leq \sqrt{25-x^{2}}
\end{aligned} \int_{0}^{\pi} \int_{0}^{5} \int_{0}^{5-r^{2}} \int_{0}^{5} r^{2} d z d r d \theta
$$

Ex 5 Evaluate the integral $\iiint \ln \left(1+\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}\right) \mathrm{d} V$, where the E is the solid formed by between the two spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=9$ in the second to the 4 th octants.
[Ans: $\pi[14 \ln (28)-13-\ln 2]]$

$$
\int_{1}^{3} \cdot \int_{\pi / 2}^{2 \pi} \cdot \int_{0}^{\pi / 2} \cdot \ln \left(1+\cdot \rho^{3}\right) \cdot \rho^{2} \sin \phi \cdot d \phi d \theta d \rho
$$

ex 6) Find the volume of the smaller. wedge. cut from a sphere of radius a by two planes that intersect along a diameter at an angle of $\pi / 6$.

$$
\begin{aligned}
& \int_{\pi / 3}^{\pi / 2} \cdot \int_{0}^{\pi} \int_{0}^{a} \cdot \rho^{2} \sin \phi d \rho d \theta d \phi \\
& \frac{a^{3} \pi}{6}
\end{aligned}
$$

Friday October 30

Reminders

Q6 .nus:- 4 questions res ubmis suns allowed.
Cumulative quiz study maternais

- All Week. 10. WebAssign due Sunday before midnight.
- Review: What is the gradient of a function.
12.9 Change of variables

A tranformation T is a function whose domain and range are both \mathbb{R}^{n} Examples - $\vec{T}(u, v)=\langle u \cos v, u \sin v\rangle, 0 \leqslant u \leq 1,0 \leq y \leq 2 \pi$ This is a transformation that has input. (u,v) and output. (x,y). So this, is a transformation from \mathbb{R}^{2} to \mathbb{R}^{2}.

- T is the transformation given by $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$. Then T is a trans formation from \mathbb{R}^{3} to \mathbb{R}^{3} that turns (ρ, θ, ϕ) into. (x, y, z)
- $T:(u, v) \rightarrow(x, y)$ given by $x=u^{2}-v^{2}, y=2 u v, \quad 1 \leq x \leq 6,1 \leq y \leq 5$

The Jacobian of a tranformation T given by $\left\{\begin{array}{l}x=g(u, v, w) \\ y=h(u, v, w) \\ z=k(u, v, w)\end{array}\right.$ is the matrix determinant

$$
J=\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
x_{u} & x_{v} & x_{w} \\
y_{u} & y_{v} & y_{w} \\
z_{u} & z_{v} & z_{w}
\end{array}\right|
$$

Note: If T is a transformation from \mathbb{R}^{2} to \mathbb{R}^{2}; use the 2×2 matrix with z and w deleted.

$$
J=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|
$$

exp) Calculate the Jacobian of the transformation $T(n, v) \rightarrow(x, y)$.
(a) $x=u^{3}-v^{2}$
(b) $x=2 e^{s-2 t}$
$y=2 u v$
(c) $x=3 r \cos (2 \theta), y=3 r \sin (2 \theta), z=t^{2}$
(a). $J=\left|\begin{array}{ll}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right|=\left|\begin{array}{cc}3 u^{2} & -2 v \\ 2 v & 2 u\end{array}\right|=3 u^{2} \cdot 2 u-(-2 v) \cdot 2 v=6 u^{3}+4 v^{2}$
(b) $J=\left|\begin{array}{ll}\dot{x}_{s} & \dot{x}_{t} \\ y_{s} & y_{t}\end{array}\right|=\left|\begin{array}{cc}2 e^{s-2 t} & -4 e^{s-2 t} \\ -3 e^{s+2 t} & -6 e^{s+2 t}\end{array}\right|=-12 e^{s-2 t} e^{s+2 t}-12 e^{s-2 t} e^{s+2 t}=-24 e^{2 s}$
(c) $J=\left|\begin{array}{lll}x_{r} & x_{\theta} & x_{t} \\ y_{r} \cdot y_{\theta} & y_{t} \\ z_{r}, z_{\theta} & z_{t}\end{array}\right|=\left|\begin{array}{ccc}3 \cos (2 \theta) & -6 r \sin (2 \theta) & 0 \\ 3 \sin (2 \theta) & 6 r \cos (2 \theta) & 0 \\ 0 & 0 & 0\end{array}\right|$

Note: Expariding the determinant along a row or column with a lot of zeros is very convenient

Let's explore what the Jacobian means.

Consider the transformation $T:(u, v) \rightarrow(x, y)$ given by $x=u+3 v, y=u-3 v$ What happens to the unit square given by $0 \leq u \leq 1,0 \leq v \leqslant 1$ under the tranformation T ?

The left edge is given by $u=0,0 \leq v \leq 1$ Under transformation T, we pug in $u=0$ to get $x=3 v, y=-3 v$, with $0 \leq v \leqslant 1$. This is the parametric form of a line segment form (0,0) to $(3,-3)$..

The bottom edge is given by $v=0,0 \leq u \leq 1$ Under transformation T, we plug in $v=0$ to get $x=u, y=u$, with $0 \leq u \leq 1$. This is the parametric form of a line segment from $(0,0)$ to $(1,1,1)$.

The right edge is given by $a \leq 1,0 \leq v \leq 1$.
Under transformation T, we ply in $u=1$ to get $x=1+3 v, y=1=3 v$, with $0 \leq v \leq 1$. This is the parametric form of a line segment from (1,1). to. (4, -2).

The top edge is given by $v=1,0 \leq u \leq 1$. Under transformation T, we pule in $v=1$ to get $x=u+3, y=u-3$, with $0 \leq u \leq 1$. This is the parametric form of a line segment from (3,-3) to , (4,-2):

Here's what T does to the unit square in the uv-plane:

The Jacobian of T is $J=\left|\begin{array}{ll}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right|=\left[\left.\begin{array}{cc}1 & 3 \\ 1 & -3\end{array} \right\rvert\,\right.$

The absolute value of the Jacobian is the scale factor for the area of a region being transformed by T.

This allows us to turn a complicated domain of integration into a simple one?
Change of variables. formula for double integrals.
Suppose. T, is a transformation that maps a region S in the uv-plane. to a region R in the $x y$-plane. Then.

Check-in 16
Evaluate $\iiint_{E} z d V$, where E lies between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ in the first octant.

Sketch of region E

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{1}^{2} \rho \cos \phi \cdot \rho^{2} \sin \phi d \rho d \theta d \phi \\
& \frac{\pi}{2} \cdot \int_{0}^{\pi / 2} \int_{10}^{2} \rho_{0}^{3} \cos \phi \sin \phi d \rho d \phi \\
& \frac{\pi}{2} \int_{0}^{\pi / 2} \cos \phi \sin \phi\left[\frac{1}{4} \rho^{4}\right]_{10}^{2} d \phi \\
& \frac{15}{4} \cdot \frac{\pi}{2} \cdot \int_{0}^{\pi / 2} \cos \phi \sin \phi d \phi \\
& \\
& \frac{15 \pi}{8}\left[-\frac{1}{2} \cos ^{2} \phi\right]_{0}^{\pi / 2} \\
& \\
& {[15 \pi / 16}
\end{aligned}
$$

Monday November 2
Reminders.

- WebAssign 12.9
- HW II section 12.9 and prob. A3.
- Study for Check-in 17. (do examples in 12.9)
12.9 Change of Variables (cont)

Recap:

- If transformation I maps a region S in the uv-plane to the region R. in the $x y$-plane, then $\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, r)}\right| d u d v$ where $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$. is the absolute value of the Jacobian - The Jacobian is $J=\left|\begin{array}{lll}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right|=x_{u} y_{v_{0}}-x_{v} y_{u}$
ex 1) Suppose T is the transformation given. by. $x=2 u+v, . y=u+2 v$
a.) Find T^{-1}, the inverse trans formation

$$
\begin{array}{r}
\text { Solve for } u \text { and } v: \quad x=2 u+v \\
\begin{array}{r}
-2(y=u+2 v) \\
x-2 y
\end{array}=-3 v \\
v=-\frac{1}{3}(x-2 y) \\
T^{-1} \text { is } u=\frac{1}{3}(2 x-y), \quad v=-\frac{1}{3}(x-2 y)
\end{array}
$$

$$
-2(x=2 u+v)
$$

$$
y=u+2 v
$$

$$
-2 x+y=-3 u
$$

$$
u=\frac{1}{3}(2 x-y)
$$

b) Compute the Jacobians of I and T^{-1}.

$$
\begin{aligned}
& \text { Jacobian of } T_{0}=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|=\left|\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right|=3 \\
& \text { Jacobian of } T_{0}^{-1}=\left|\frac{\partial(u, v)}{\partial(x, y)}\right|=\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
2 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3
\end{array}\right|=\frac{4}{9}-\frac{1}{9}=\frac{1}{3}
\end{aligned}
$$

This shortcut is not in .textbook

Useful fact: If the transformation T. mapping a region in the ur-plane to a region in the $x y$-plane has Jacobian J, then the transformation T^{-1} mapping a region in the $x y$-plane. to a region in the ur-plane has Jacobian $\frac{1}{J}$
ex 2) Use the change of variables $x=2 u+v, y=u+2 v$ to evaluate $\iint_{R} x-3 y d A$ where R is the triangular region with vertices. $(0,0),(2,1)$, and $(1,2)$..

Start with a sketch

Plug. each boundary piece in to the given change of variables, to find the shape of the new region S in $u v$-plane.

Piece 1
$y=2 x$
$u+2 v=2(2 u+v)$
$u=0$ 。

Piece 2
$y=\frac{1}{2} x$
$u+2 v=\frac{1}{2}(2 u+r)$
$v=0$

Piece 3 $y=3-x$ $u+2 v=3-(2 u+v)$. $v=1-u$

To. use the change of variables formula, we need the Jacobian of T

$$
J^{\circ}=\left|\frac{\partial\left(x^{\circ}, y\right)}{\partial(u, v)}\right|^{\circ}=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|=\left|\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right|=3
$$

Write the new. integral in terms of u_{0}, v. Use sketch to. set the bounds.

$$
\begin{aligned}
\iint_{R} x-3 y d A & =\iint_{S}\left(2 u+v-3(u+2 v)^{0}\right) \cdot|3| d A \\
& =3 \iint_{S}-u-5 v d A \\
& =3 \int_{0}^{1} \int_{0}^{1-u}-u-5 v d v d u \\
& =-3
\end{aligned}
$$

* Similar to HWII prob A3 and popular exam question
ex 3) Use a change of variables to compute $\iint_{R} \frac{x-2 y}{3 x-y} d A$ where R is the region bounded by $x-2 y=0, x-2 y=4,3 x-y=1,3 x-y=8$

Notice $x-2 y=0$ and $x-2 y=4$ can be conveniently renamed $u=0$ and $u=4$.for. $u=x-2 y$
Similarly, $3 x-y=1$ and $3 x-y=8$. can be renamed $v=1$ and $v=8$. for $v=3 x-y$
So let $u=x-2 y_{0}, v=3 x-y$.
Let's get. organized with a sketch.

We have equations for T^{-1} (from x, y to $\left.u, v\right)$. instead. of. To compute the Jacobian of T, we use the - fact that the Jacobian of T_{0} is the reciprocal of the Jacobian of. T^{-1}..

Jacobian of $T^{-1}=\left|\frac{\partial(u, v)}{\partial(x, y)}\right|=\left|\begin{array}{cc}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right|=\left|\begin{array}{cc}1 & -2 \\ 3 & -1\end{array}\right|=(1)(-1)-(3)(-2)=5$
Jacobian of. $T=\frac{i}{5}$

Use this to rewrite our. integral

$$
\iint_{R} \frac{x-2 y}{3 x-y} d A=\iint_{S} \frac{u}{v} \cdot\left|\frac{i}{5}\right| d A=\frac{1}{5} \int_{1}^{8} \int_{0}^{4} \frac{u}{V} d u d v=\frac{8}{5} \ln 8
$$

13.1 Vector Fields

A vector field on \mathbb{R}^{2} is a function \vec{F} that assigns a vector to each point (x, y) A vector field on \mathbb{R}^{3} is a function \vec{F} that assigns a vector to each point (x, y, z)
ex) Draw the vector field $\vec{F}=\langle x, y\rangle$

ex 2) Match the vector fields (a)-(d) with the plots labeled I-IV. Give reasons for your choices.
(a) $\langle y, x\rangle$. (b) $\langle 1, \sin y\rangle$.
(c) $\langle x-2, x+1\rangle$
(d) $\langle y, 1 / x\rangle$.

ex 3). Use vectorPlot and vectorPlot3D. to. find a vector field that fits each description.
a) $3 D$ starburst
b) $2 D$ starburst with all vectors same. length
c) 2D upward flow
d) 2D swirl
e) 3D star collapse. (inward starburst)

Hint for the ones below: the gradient of a surface is a vector field.
f). 2D all arrows pointing away from y-axis and orthogonal to y-axis
g) 2D with one of these.

Tuesday November 3

Reminders

- WebAssign 13.1
- HW.I2 section 13.1 and problem A1 (see Piazza for technology help)
- Review: arc length formula
13.1 Vector fields

Recap
$\vec{F}=\langle x, y\rangle$ is the "starburst" vector field

Go to student.desmos.com and use code QDC AC8
Do. the "Vector. Field Matching" activity
ex 3) Use VectorPlot and vectorPlot3D to find a vector field that fits each description.
a) $3 D$ starburst
b) $2 D$ starburst with all rectors same. length.
c) $2 D$ upward flow
d) 2D. swirl
e) 3D. star collapse. (inward starburst)

Hint for the ones below: the gradient of a surface is a vector field.
f) 2D all arrows pointing away from y-axis and orthogonal to y-axis
g) $2 D$ with one of these

Check-in 17
Evaluate $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$ where R is the rectangle enclosed by the lines, $x-y=0, x-y=2, x+y=0, x+y=3$. by making an appropriate change of variables.

Jacobian of $T^{-1}=\left|\frac{\partial(u, r)^{\prime}}{\partial(x, y)}\right|=\left|\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 1 & 1\end{array}\right|=2$

$$
\begin{aligned}
\iint_{R}(x+y) e^{x^{2} y^{2}} d A & =\iint_{S} v e^{u v} \cdot\left|\frac{1}{2}\right|_{0}^{0} d A \\
& =\frac{1}{2} \int_{0}^{30} \int_{0}^{2} v e^{u v} d u d v \\
& =\frac{1}{2} \int_{0}^{3} v\left[\frac{1}{v} e^{i v}\right]_{u=0}^{u=2} d v \\
& =\frac{1}{2} \int_{0}^{3} e^{2 v}-1 d_{0}^{2} d \\
& =\frac{1}{2}\left[\frac{1}{2} e^{2 v}-v\right]_{0}^{3} \\
& =\frac{1}{2}\left[\frac{1}{2} e^{6}-3-\frac{1}{2}+0\right] \\
& =\frac{e^{6}-7}{4}
\end{aligned}
$$

Wednesday November 4
Reminders

- Compile HW II for André

Note: For problem A2, you do not need to. write all 6 orders of integration. The goal is to pick the nicest one.

- [Thursday] Study for Check-in. 18
13.2 Line integrals

A line integral is an integral where the domain of integration is some curve. . . There are two different. kinds - one where we integrate a scalar function and one where we integrate a vector function

If $z=f_{l}(x, y)$, the graph of f is a surface
Then the line integral of $f(x, y)$ over a curve C is the area of the curved fence.

The height of the fence is $f(x, y)$
The base of the fence is C.

The graph of. $\vec{F}(x, y)$ is a vector field
Then the line integral of $\vec{F}_{0}(x, y)$ over a curve C is the work done by \vec{F} on a particle. traveling on C

We discuss the line integral of a scalar function $f(x, y)$. first.

Curve C, with parametrization

$$
\vec{r}(t)=\langle x(t), y(t)\rangle
$$

Line integral of $f(x, y)$ over. C is

$$
\int_{c} f(x, y) d s=\int_{a}^{b} \underbrace{f(x(t), y(t))}_{\text {(height of rectangle) }} \underbrace{\sqrt{x_{t}^{2}+y_{t}^{2}} d t}_{\text {os }}
$$

ex 1) Evaluate $\int_{c} x y^{4} d s$ where C is the right half of $x^{2}+y^{2}=16$
Step. 1 : Parameterize. C.

$$
\begin{aligned}
C: \vec{r}(t) & =\langle 4 \cos t, 4 \sin t\rangle \\
& -\frac{\pi}{2}
\end{aligned} \leq t \leq \frac{\pi}{2} .
$$

Step 2 : Compute $d s_{s}=\sqrt{x_{t}^{2}+y_{t}^{2}} d t$

$$
\begin{aligned}
d s & =\sqrt{16 \sin ^{2} t+16 \cos ^{2} t} d t \\
& =4
\end{aligned}
$$

[Note: For a circle, $d s=($ radius $) d t$.
.This can be a computational shortcut].

Step 3: Plug in $\vec{r}(t)$, and $d s$

$$
\int_{-\pi / 2}^{\pi / 2} 4 \cos t(4 \sin t)^{4^{\circ}} \cdot 4 d t
$$

Step 4: Compute

$$
4^{6} \int_{-\pi / 2}^{\pi / 2} \cos t \cdot \sin ^{4} t d t=4^{6} \int_{-1}^{1} u^{4} d u=\frac{4^{6} \cdot 2}{5}
$$

ex 2). Suppose f is a function satisfying. $7,9 \leq f(x, y) \leq 8,0$ for all. (x, y)
Which of the numbers $0, \pm 10, \pm 50, \pm 100, \pm 200$.
is closest to $\int_{c} f(x, y) d s$ for the curve. C. shown below?

Arc length $\approx 5+11+6+3$

$$
\begin{aligned}
& \text { Height } \approx 8 \\
& \int_{c} f d s \approx 25 \\
& 200
\end{aligned}
$$

ex 3) Evaluate $\int_{0} x e^{y z} d s$ where C is the line segment from $(0,0,0)$ to $(1,2,3)$

Step 1: Parameterize C.
\int Step 2: Compute $d s=\sqrt{x_{t}^{2}+y_{t}^{2}+z_{t}^{2}} d t$

Step 3: Plug in $\vec{r}(t)$ and $d s$

Step 4: Compute

$$
C: \vec{r}(t)=\langle t, 2 t, 3 t\rangle \quad 0 \leq t \leq 1
$$

$$
d s=\sqrt{1^{2}+2^{2}+3^{3}} d t=\sqrt{14} d t .
$$

$$
\int_{0}^{1} t e^{6 t^{20}}: \sqrt{14} d t
$$

$$
\sqrt{14}: \frac{1}{12} \int_{0}^{b_{0}} e^{u} d u=\frac{\sqrt{14}\left(e^{6}-1\right)}{12}
$$

Now lets discuss the line integral over a scalar field
Wee bit of physics

$$
\text { Work }=\text { Force } \cdot \text { Distance }
$$

These are both vectors

Here is the vector field. $\langle 3,1\rangle$. Think of each vector as the force of some flowing wind at that point So, $\vec{F}=\langle 3,1\rangle$ can be thought of as a constant breeze everywhere in the〈3.1〉 direction.
ex 4) If a bee flies from $(-1,-1)$ to. $(2,2)$ in a straight line, what is the work done on the bee by \vec{F} ?

$$
\begin{aligned}
\text { Length of projection } & =\text { comp } \vec{a} \vec{F} \\
& =\vec{F} \cdot \frac{\vec{d}}{|\vec{d}|} \\
& =\langle 3,1\rangle \cdot \frac{1}{3 \sqrt{2}}\langle 3,3\rangle \\
& =2 \sqrt{2} \quad \text { This }
\end{aligned}
$$

Total work $=2 \sqrt{2}$: length of. \vec{d}

$$
=2 \sqrt{2} \cdot 3 \sqrt{2}
$$

Notice that we calculated $\vec{F} \cdot \frac{\vec{d}}{|\vec{d}|}$ and then multiplied.

$$
=12
$$

$$
\text { by }|\vec{d}| \text {; which } \cdot \text { is } \cdot \vec{F}: \frac{\vec{d}}{|\vec{d}|} \cdot(|\vec{d}|)=\vec{F} \cdot \vec{d} \text {. }
$$

See line integrals over vector fields animation on Wikipedia

This vector field can not be the gradient of some surface

This vector field can be the gradient of some surface

Friday November 6
Reminders

- All Week 11. WebAssign due Sunday before midnight.
- HW. 12 section 13.2 (esp. \#18, useful for Quiz 6).
- Study for Quiz 6 . (sections 12.8 to 13.2).
13.2 Line integrals (cont).

Recap
Line integral of scalar function

$$
\int_{c} f d s=\int_{a}^{b} f(\vec{r}(t))\left|r^{\prime}(t)\right| d t
$$

Line integral of vector field.

ex 5) Let $\vec{F}=\left\langle 3 x^{2}-6 y z, 2 y+3 x z, 1-4 x y z^{2}\right\rangle$ and evaluate $\int_{c} \vec{F} \cdot d \vec{r}$ along the following paths C.
(a) The path from $(0,0,0)$ to $(1,1,1)$ given by $x=t, y=t^{2}, z=t^{3}$
(b) The straight line from $(0,0,0)$ to $(1,1,1)$
(a). Step 1: Parametrize. C.

Step 2: Compute $\cdot \vec{r}^{\prime}(t)$
Step 3: Compute $\vec{F}(\vec{F}(t)) \cdot \vec{F}(t)$.

Step 4: Integrate
(b). Step 1: Parametrize C.

Step 2: Compute. $\vec{r}^{\prime}(t)$
Step 3: Compute $\vec{F}(\vec{F}(t) \cdot \vec{F}(t)$

Step 4 : Integrate

The, curve C has parametrization $\vec{r}(t)=\left\langle t, t_{0}^{2}, t^{3}\right\rangle, 0 \leq t \leq 1$.

$$
\dot{\vec{r}}^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle
$$

$$
\begin{aligned}
\overrightarrow{\vec{F}}_{(\vec{r}(t)) \cdot} \vec{r}_{0}^{\prime}(t) & =\left\langle 3 t^{2}-6 t^{2} \cdot t^{3}, 2 t^{2}+3 t \cdot t^{3}, 1-4 t \cdot t^{2} \cdot\left(t^{3}\right)^{2}\right\rangle \cdot \vec{r}_{0}^{\prime}(t) \\
& =\left\langle 3 t^{2}-6 t^{5}, 2 t^{2}+3 t^{4}, 1-4 . t^{9}\right\rangle \cdot\left\langle!, 2 t, 3 t^{2}\right\rangle \\
& =3 t^{2}-6 t^{5}+2 t\left(2 t^{2}+3 t^{4}\right)+3 t^{2}\left(1-4 t^{9}\right) \\
& =6 t^{2}+.4 t^{3}-.12 t^{11}
\end{aligned}
$$

$$
\int_{0}^{1} 6 t^{2}+4 t^{3}-12 t^{\prime \prime} d t=\frac{6}{3}+\frac{4}{4}-\frac{12}{12}=2
$$

The curve C has parametrization $\vec{r}(t)=\langle t, t, t\rangle, 0 \leqslant t \leq 1$.

$$
\vec{r}^{\prime}(t)=\langle i, i, i\rangle
$$

$$
\begin{aligned}
\dot{\vec{F}}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) & =\left\langle 3 t^{2}-6 t^{2}, 2 t+3 t^{2}, 1-4 t^{4}\right\rangle: \dot{\vec{r}}^{\prime}(t) \\
& =\left\langle-3 t^{2}, 2 t+3 t^{2}, 1-4 t^{4}\right\rangle:\langle 1,1,1\rangle \\
& =2 t-4 t^{4}+1
\end{aligned}
$$

$$
\int_{0}^{1} 2 t-4 \cdot t^{4}+1 d t=\frac{2}{2}-\frac{4}{5}+1=\frac{6}{5}
$$

ex 6) If $\vec{F}=\frac{x}{\sqrt{x^{2}+y^{2}}} \vec{\imath}+\frac{y}{\sqrt{x^{2}+y^{2}}} \vec{\jmath}$ and. C is the parabola $y=1+x^{2}$ from $(-1,2)$ to $(1,2)$, is $\int_{c} \vec{F} \cdot d \vec{r}$ positive, negative, or zero?

$$
\int_{c} \hat{F} \cdot d \vec{r}=0
$$

ex 7) Find the work done by the force field. $\vec{F}(x, y)=x \vec{\imath}+(y+2) \vec{j}$ in moving an object. along an arch of a cycloid $\vec{r}(t)=\langle t-\sin t, 1-\cos t\rangle,. 0 \leq t \leq 2 \pi$.

Step 1: Parametrize. C

$$
\vec{r}(t)=\left\langle t-\sin t, 1-\cos t_{0}\right\rangle, 0 \leq t \leq 2 \pi .
$$

Step 2: Compute $\vec{F}^{\prime}(t)$

$$
\vec{r}^{\prime}(t)=\langle 1-\cos t, \sin t\rangle
$$

$$
\text { Step 3: Compute } \begin{aligned}
\vec{F}\left(\vec { F } (t) \cdot \vec { \vec { r } } (t) \quad \vec { \vec { F } } \left(\vec{F}(t) \cdot \overrightarrow{\vec{F}^{\prime}(t)}\right.\right. & =\langle t-\sin t, 1-\cos t+2\rangle \cdot \vec{r}^{\prime}(t) \\
& =\langle t-\sin t,-\cos t,\rangle \cdot\langle 1-\cos t, \sin t\rangle \\
& =t-\cos t-\sin t+\sin t \cos t+3 \sin t-\sin t \cdot \cos t \\
& =t-t \cos t+2 \sin t
\end{aligned}
$$

Step 4: Integrate $\int_{0}^{2 \pi} t-t \cos t+2 \sin t d t=\left[\frac{1}{2} t^{2}\right]_{0}^{2 \pi}-\left([t \sin t]_{0}^{2 \pi}-\int_{0}^{2 \pi} \sin t d t\right)+0$

$$
=2 \pi^{2}
$$

Check-in 18
Suppose $f(x, y)=x, \vec{F}=\nabla, f$,
C_{1} is the line from $(-2,0)$.to $(2,0)$,
C_{2} is the line from $(0,0)$ to $(-4,0)$.
(a) Is $\int_{c_{1}} f d s$ positive, negative, or zero?
(b) Is $\int_{c_{2}} f d s$ positive, negative, or zero?
(c) Is $\int_{C_{1}} \vec{F} \cdot d \vec{r}$ positive, negative, or zero?
(d) Is $\int_{c_{2}} \vec{F} \cdot d \vec{r}$ positive, negative, or zero?

Monday November 9
Reminders

- Do. Check-in 19 on Canvas before midnight tonight
- Study for Quiz 6
13.3 Fundamental Theorem of Line Integrals

Recap
Let $z=f(x, y)$ be a scalar-valued function. Then $\nabla f=\left\langle f_{x}, f_{y}\right\rangle$ is a vector field in \mathbb{R}^{2} whose vectors point in the direction of steepest increase

Graph of $f(x, y)=x^{2}+y^{2}$

Level sets $x^{2}+y^{2}=k$ form contour plot Gradient $\nabla f=\langle 2 x, 2 y\rangle$. is the vector field.

If a vector field \vec{F} is the gradient. vector field of a scalar function. f, then we say $\vec{F}_{1 s}$ a conservative vector field. The scalar function f is the potential function of \vec{F}.

Let's look at why we use these terms.
ex 1) The vector field \vec{F} is graphed below, By inspection, does \vec{F} appear to be conservative?
\qquad Just eyeballing this graph, if it were the gradient of some surface, there's local maxima here
sadie point here
uphill toward the two local maxima everywhere else

Yes, this looks like it could be the gradient of a two -hump surface.

Here it is:

These are the contour plot and gradient. field of the surface $z=f(x, y)$ on the right
This vector field is conservative in the sense that energy is conserved

This is the graph of the potential junction' of the vector field on' the left.

This is called a potential function because it represents. the potential energy, or electrostatic. potential, or some other kind of potential

If \vec{F} is a conservative vector field, we can actually find its potential function f. This is analogous to. finding the antider privative in Call. 1.
ex 2) Let. $\vec{F}(x, y)=(2 x-3 y) \vec{\imath}+(-3 x+4 y-8) j$ and find $f(x, y)$ such that $\vec{F}=\nabla f$.
We are. looking. for $f(x, y)$ such that its gradient is \vec{F}.
So we want.

$$
\begin{aligned}
\nabla f & =\vec{F} \\
\left\langle f_{x}, f_{y}\right\rangle & =\langle 2 x-3 y,-3 x+4 y-8\rangle \\
f_{x} & =2 x-3 y
\end{aligned}
$$

integrate with respect to x

$$
f=x^{2}-3 y x+c(y)
$$

some unknown terms
that contain only y 's and no x's

$$
f_{y}=-3 x+4 y-8
$$

integrate with respect to y.

$$
f=-3 x y+2 y^{2}-8 y+d(x)
$$

some unknown terms. that contain only x 's. and no y 's.

Compare the .two versions of f to figure out what f should be Be.sure to include. every term and ignore duplicates.

$$
\begin{aligned}
& f=x^{2}-3 y x+c(y) f=-3 x y+2 y^{2}-8 y+d(x) \\
& f(x, y)=x^{2}-3 x y+2 y^{2}-8 y+C
\end{aligned}
$$

This can be any constant

The reasons that we care about conservative vector fields are
(1) many physical phenomena have conservative force fields (gravity, electrostatics, etc)
(2) it makes line integrals way easier!.

Fundamental Theorem of Line Integrals
Let C be a smooth curve with parametrization. $\vec{F}(t)$ for $a \leq t \leq b$.
Let f be a differentiable function whose gradient Vf. is contrumous on C.
Then

$$
\int_{c} \nabla f \cdot d \vec{r}=f(\vec{r}(b))-f(\vec{r}(a))
$$

plug in end pt. plug in start opt

Useful fact based on the Fundamental. Theorem of Line Integrals:
When \vec{F} is conservative, the actual path of integration doesn't matter at all! The only thing that matters is the value of f at the endpoints! This is called path independence.

If $\vec{F}=\nabla f$, then

$$
\int_{c_{1}} \vec{F} \cdot d \vec{r}=\int_{c_{2}} \vec{F} \cdot d \vec{r}
$$

Wikipedia article on conservative vector field gives intuition about path independence.
Informal treatment [edit]
In a two- and three-dimensional space, there is an ambiguity in taking an integral between two points as there are infinitely many paths between the two points-apart from the straight line formed between the two points, one could choose a curved path of greater length as shown in the figure. Therefore, in general, the value of the integral depends on the path taken. However, in the special case of a conservative vector field, the value of the integral is independent of the path taken, which can be thought of as a large-scale cancellation of all elements $d R$ that don't have a component along the straight line between the two points. To visualize this, imagine two people climbing a cliff; one decides to scale the cliff by going vertically up it, and the second decides to walk along a winding path that is longer in length than the height of the cliff, but at only a small angle to the horizontal. Although the two hikers have taken different routes to get up to the top of the cliff, at the top, they will have both gained the same amount of gravitational potential energy. This is because a gravitational field is conservative. As an example of a non-conservative field, imagine pushing a box from one end of a room to another. Pushing the box in a straight line across the room requires noticeably less work against friction than along a curved path covering a greater distance.
ex 3) Evaluate $\int_{c} \vec{F} \cdot d \vec{r}$ where \vec{F} is a conservative vector field given by $\vec{F}=x^{2} i+y^{2}, j$ and C is the arc of the parabola $y=2 x^{2}$. from $(-1,2)$ to $(2,8)$
\vec{F} is conservative, so \vec{F} is the gradient of some function f. If we find f. then we can use. the. Fundamental Theorem of Line Integrals

1) Find f

$$
\begin{aligned}
& f_{x}=x^{2} \\
& f=\frac{1}{3} x^{3}+c(y) \quad f_{y}=y^{2} \\
& f=\frac{1}{3} y^{3}+d(x) \\
& f(x, y)=\frac{i}{3}\left(x^{3}+y^{3}\right)+C
\end{aligned}
$$

2) Use FTLI

$$
\begin{aligned}
\int_{c} \dot{\vec{F}} \cdot d r & =\int_{c} \nabla f \cdot d \vec{r} \\
& =f(\text { end } p t)-f(\text { start pt }) \\
& =f(2,8)-f(-1,2) \\
& =\frac{1}{3}\left(8^{3}+2^{3}\right)-\frac{1}{3}\left(2^{3}+(-1)^{3}\right) \\
& =\frac{8^{3}}{3}+\frac{1}{3} \\
& =\frac{513}{3}=171
\end{aligned}
$$

Some vocabulary: A curve is simple if it does not intersect itself.
A curve is closed if it starts and stops at the same point
Which of these curves are closed? simple?

simple
not closed

not simple. closed

not simple.
not closed

simple
closed.

Useful fact based on previous useful fact:
\#. If \vec{F} is conservative and C is a simple closed curve, then $\int_{c} \vec{F} \cdot d \vec{r}=0$

Which of these vector fields is not conservative?

This vector field not conservative because $\int_{c} \vec{F} d \vec{r}$ is positive and not zero. when C is a counter: clockwise loop around the origin

- This vector field looks like it can be conservative, but hard to be sure. based. on graph alone.
ex 4) (a) If $\vec{F}(x, y, z)=e^{y} \vec{\imath}+x e^{y} \vec{\jmath}+(z+1) e^{z} \vec{k}$ and. \vec{F} is conservative. find its potential function f.
$f_{x}=e^{y}$.
$f=x e_{0}^{y}+c(y, z)$

$f_{y}=x e^{y}$
$f=x e^{y}+d(x, z)$
unknown terms with y, z but no x.

$$
\begin{aligned}
f_{z} & =(z+1) e^{z} \\
f_{0} & =(z+1) e^{z}-\int e^{z} d z \\
& =z e^{z}+h(x, y)
\end{aligned}
$$

$$
f(x, y, z)=x e^{y}+z e^{z}+C
$$

(b) If C_{1} is given by $\vec{r}_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ for $0 \leq t \leq 1$, evaluate $\int_{c_{1}} \vec{F} \cdot d \vec{r}$. \vec{F}° is conservative, so use FTLI

$$
\begin{aligned}
\int_{c_{1}} \vec{F}_{0} \cdot d \vec{r}_{0} & =\int_{c_{1}} \nabla f \cdot d \vec{r} \\
& =f(1,1,1)-f(0,0,0) \\
& =2 e-0 \\
& =2 e
\end{aligned}
$$

(c) If C_{2} is given by $\vec{r}_{2}(t)=\left\langle\sin \frac{\pi t}{2}, t\right.$, te $\left.e^{t^{2}}\right\rangle$ for $0 \leq t \leq 1$, evaluate $\int_{c_{2}} \vec{F} \cdot d \vec{r}$

Note $\vec{r}_{2}(0)=(0,0,0)$ and $\dot{r}_{2}(1)=(1,1,1)$ Since $\dot{\vec{F}}_{0}$ is conservative, $\int_{c} \vec{F}: d \vec{r}$. is path independent

$$
\int_{C_{2}} \vec{F} \cdot d \dot{\vec{r}}=\int_{c_{1}} \dot{\vec{F}} \cdot d \vec{r}=2 e
$$

(d) $\mid f C_{3}$ is given by $\vec{r}_{3}(t)=\langle\sin t, \cos t, 0\rangle$ for $0 \leq t \leq 2 \pi$, evaluate $\int_{c_{3}} \vec{F} \cdot d \vec{r}$ Since $\dot{\vec{F}}$ is conservative and. C_{3}, is a simple closed. loop, $\int_{C_{3}} \dot{\vec{F}} \cdot d \vec{r}=0$

Enesday. November 10
Reminders

- [Important] Do. Quiz. 6. on Canvas between. 7 and 10. pm - A timer is strongly recommended
- Maybe do the free response question first?

Name: \qquad

1. Determine whether each statement is TRUE or FALSE
(a) The integral $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta$ gives the volume of $1 / 4$ of a sphere.
(b) The integral $\int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{2} r d z d r d \theta$ represents the volume enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $z=2$
(c) If the work done by a force $\overrightarrow{\mathbf{F}}$ on an object moving along a curve is W, then for an object moving along the curve in the opposite direction, the work done by $\overrightarrow{\mathbf{F}}$ will be $-W$.
(d) If a particle moves along a curve C, the total work done by a force $\overrightarrow{\mathbf{F}}$ on the object is independent of how quickly the particle moves.
(e) If f is a scalar-valued function, then $\int_{-C} f d s=-\int_{C} f d s$
(f) The line integral $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$ is a vector.
2. Evaluate $\iiint_{E} x d V$, where E is enclosed by the planes $z=0$ and $z=x+y+5$ and by the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
3. Find the volume of the part of the ball $\rho \leq 5$ that lies between the cones $\phi=\frac{\pi}{6}$ and $\phi=\frac{\pi}{3}$.
4. Evaluate $\iint_{R}\left(x^{2}-x y+y^{2}\right) d A$ where R is the region bounded by the ellipse $x^{2}-x y+y^{2}=2$. Use the transformation given by $x=\sqrt{2} u-\sqrt{2 / 3} v, y=\sqrt{2} u+\sqrt{2 / 3} v$
5. Use an appropriate change of variables to evaluate $\iint_{R} \frac{x-y}{x+y} d A$ where R is the square with vertices $(0,2)$, $(1,1),(2,2)$, and $(1,3)$.
6. Sketch the following vector fields in the $x y$-plane.
(a) $\overrightarrow{\mathbf{F}}(x, y)=\langle y, 0\rangle$
(b) $\overrightarrow{\mathbf{F}}(x, y)=\langle 2,3\rangle$
(c) $\overrightarrow{\mathbf{F}}(x, y)=\langle-y, x\rangle$
7. Calculate the following line integrals.
(a) $\int_{C} 3 x^{2}-2 y d s$ where C is the segment from $(3,6)$ to $(1,-1)$
(b) $\int_{C} 2 x^{3} d s$ where C is the portion of $y=x^{3}$ from $x=2$ to $x=-1$.
(c) $\int_{C} 2 y x^{2}-4 x d s$ where C is the lower half of the circle centered at the origin of radius 3 .
(d) $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$ where $\overrightarrow{\mathbf{F}}=\left\langle y^{2}, 3 x-6 y\right\rangle$ and C is the line segment from $(3,7)$ to $(0,12)$.
(e) $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$ where $\overrightarrow{\mathbf{F}}=\langle x+y, 1-x\rangle$ and C is the portion of $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ in the fourth quadrant with counterclockwise orientation.
8. For each vector field $\overrightarrow{\mathbf{F}}$ and curve C shown below, is the value of $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$ positive, negative, or zero?
(a)

(b)

(c)

(d)

Answers
(1) $F T T T F F$
(2) $65 \pi / 4$
(3) $\frac{\sqrt{3}-1}{3} 125 \pi$
(4) $4 \pi / \sqrt{3}$
(5) $-\ln 2$
(6) Use Mathematica function VectorPlot[] or this online plotter https://academo. org/demos/vector-field-plotter/] to check your answers.
(7) (a) $8 \sqrt{53}$ (b) $\left(145^{3 / 2}-10^{3 / 2}\right) / 27 \approx 63.4966$ (c) -108 (d) $-1079 / 2$ (e) $5-3 \pi$
(8) pos, neg, pos, neg
4. Evaluate $\iint_{R}\left(x^{2}-x y+y^{2}\right) d A$ where R is the region bounded by the ellipse $x^{2}-x y+y^{2}=2$. Use the transformation given by $x=\sqrt{2} u-\sqrt{2 / 3} v, y=\sqrt{2} u+\sqrt{2 / 3} v$

Formula: $\left.\iint_{R} f(x, y) d A=\iint_{S} f(x(u, r), y(u, r))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \dot{d}\right) \dot{d}$

Compute Jacobian : $\frac{\partial\left(x_{1}\right)}{\partial\left(u u_{i}\right)}=\left|\begin{array}{lll}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right|=\left|\begin{array}{l}0 \\ \sqrt{2} \\ 0 \\ \sqrt{2} \\ \sqrt{\frac{2}{3}} \\ \sqrt{\frac{2}{3}}\end{array}\right|^{\circ}=\frac{4}{\sqrt{3}}$
Convert integrand, to $u_{1},: \quad x=\sqrt{2} u_{0}-\sqrt{2 / 3} v, y=\sqrt{2} u+\sqrt{2 / 3} v$

$$
\begin{aligned}
x^{2}-x y+y^{2} & =(\sqrt{2} u-\sqrt{2 / 3} v)^{2}-2(\sqrt{2} u-\sqrt{2 / 3} v)(\sqrt{2} u+\sqrt{2 / 3} v)+(\sqrt{2} u+\sqrt{2 / 3} v)^{2} \\
& =2 u_{0}^{2}+2 v^{2}
\end{aligned}
$$

Convert region R, to. air $: \quad x^{2}-2 x y-y^{2}=2$.

$$
\begin{aligned}
& 2 u^{2}+2 v^{2}=2 \\
& u^{2}+v^{2}=1
\end{aligned} \quad \text { thew region is inside unit. circle }
$$

Write new integral: $\int_{-1}^{1} \int_{-\sqrt{1-v^{2}}}^{\sqrt{1-v^{2}}}\left(2 u^{2}+2 v_{0}^{2}\right)\left|\frac{4}{\sqrt{3}}\right| d u d v$
(you may convert to polar to do final computations)
5. Use an appropriate change of variables to evaluate $\iint_{R} \frac{x-y}{x+y} d A$ where R is the square with vertices (0,2), $(1,1),(2,2)$, and $(1,3)$.

$$
\begin{aligned}
\text { Let } u=y-x, & v=y+x \text {. be our new region } S \text {. } \\
.0 \leq u \leq 2, & 2 \leq v \leq 4 .
\end{aligned}
$$

Formula: $\iint_{R} f(x, y) d A^{\circ}=\iiint_{S}^{0} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, y)}\right|_{0}^{0} d u d v$

Compute Jacobian: $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$ hard to compute because our transformation is not in the form $x=-y=$ =-

$$
\begin{aligned}
\text { Weill compute }\left|\frac{\partial(u, v)}{\partial(x, y)}\right| \text { instead }\left|\frac{\partial(u, v)}{\partial(x, y)}\right|=\left|\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right|=-2 \\
\left|\frac{\partial(x, y)}{\partial(u, r)}\right|=-\frac{1}{2}
\end{aligned}
$$

Convert integrand: $\frac{x-y}{x+y}=\frac{-u}{v}$

Write new integral: $\int_{2}^{4} \int_{0}^{2}-\frac{u}{v}\left|-\frac{i}{2}\right| \cdot d u d v=-\frac{1}{2} \cdot \int_{2}^{4} \int_{0}^{i} \cdot \frac{u}{v} d u d v$

Do. integral:
(b) $\int_{C} 2 x^{3} d s$ where C is the portion of $y=x^{3}$ from $x=2$ to $x=-1$.

Formula. $\int_{c} \dot{f} d s=\int_{a}^{b} f(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| d t$

Parametrize $C \quad \vec{F}(t)=\left\langle t, t^{3}\right\rangle \quad-1 \leq t \leq 2$
Compute $\left|\vec{r}^{\prime}(t)\right| \vdots \quad \vec{r}^{\prime}(t)=\left\langle 1,3 t^{2}\right\rangle$

$$
\left|\vec{r}^{\prime}(t)\right|=\sqrt{i+9 t^{2}}
$$

Plug $\vec{r}(t)$. into $f: f(\vec{r}(t))=2 t^{3}$
Write integral: $\int_{-1}^{2} 2 t^{3} \sqrt{1+9 t^{4}} d t$

Quick curve parametrization review
bottom half of circle of radius 1

$$
\vec{r}(t)=\langle\cos t, \sin t\rangle . \quad \pi_{0} \leq t \leq 2 \pi
$$

Left half of circle of radius 5

$$
\vec{r}(t)=\langle 5 \cos t, 5 \sin t\rangle \quad \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}
$$

top half of this ellipse

$$
\vec{r}(t)=\langle 4 \cos t, 2 \sin t\rangle \quad 0 \leq t \leq \pi
$$

line segment from $(1,2)$ to $(6,13)$

$$
\vec{r}(t)=\langle 1+5 t, 2+\| t\rangle, 0 \leq t \leq 1
$$

line segment from $(0,6)$ to $(5,-2)$

$$
\vec{r}(t)=\langle 5 t, \quad 6-8 t\rangle \quad 0 \leq t \leq 1
$$

line segment from $(10,7)$ to $(4,6)$

$$
\begin{aligned}
& \quad \vec{r}(t)=\langle 10-6 t, \overrightarrow{-t}\rangle \quad 0 \leq t \leq 1 \\
& y=\sqrt{x-4} \text { from }(4,0) \text { to }(20,4) \\
& \quad \vec{r}(t)=\langle t, \sqrt{t-4}\rangle \quad 4 \leq t \leq 20
\end{aligned}
$$

$x=y^{3}$ from $(-1,-1)$ to $(8,2)$

$$
\vec{r}(t)=\left\langle, t^{3}, t_{0}\right\rangle,-1 \leq t \leq 2
$$

$x=e^{y}$ from $x=e$ to $x=e^{3}$

$$
r(t)=\left\langle e^{t}, t\right\rangle \quad 1 \leq t \leq 3
$$

$$
\begin{array}{rlrl}
y= & 4 \sin \left(x^{2}\right) \text { from } x=0 & \text { to } x=2 \pi \\
& \vec{r}(t)=\left\langle t_{1} 4 \sin \left(t^{2}\right)\right\rangle & & 0 \leq t \leq 2 \pi
\end{array}
$$

How to pick appropriate transformation

Textbook section 12.9 exercises
23) $\iint_{R} \frac{x-2 y}{3 x-y} d A$ parallelogram enclosed by $x-2 y=0$. These look $x-2 y=4 \quad\} \begin{aligned} & \text { similar to } \\ & \text { each other }\end{aligned}$

$$
u=x-2 y \quad 0 \leq u \leq 4
$$

$$
v=3 x_{0}-y_{0} \quad 1 \leq v_{0} \leq 8
$$

new integrand is $\frac{u}{v}\left|\frac{\partial(x, y)}{\partial(\bar{u},)}\right|$

$$
\left.\begin{array}{l}
3 x-y=1 \\
3 x-y=8
\end{array}\right\}
$$

$$
\left.\begin{array}{ll}
{[x-y=0} & x-y=2
\end{array}\right] \text { similar } 1\left[\begin{array}{ll}
x+y=0 & x+y=3
\end{array}\right] \text { similar }
$$

new integrand is $v e^{u v}\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$
26) $\iint_{R} \sin \left(9 x^{2}+4 y^{2}\right) d A R^{2}$ region in first quadrant bounded.
Circles are easier than ellipses, so to turn $9 x^{2}+4 y_{0}^{2}=1$ into $u_{0}^{2}+v_{0}^{2}=1$. ellipse $9 x^{2}+4 y^{2}=1$ we pick. $u=3 x, v=2 y$
new integrand is $\sin \left(u^{2}+v^{2}\right) \cdot\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$

Wednesday November II
Reminders.

- Submit Quiz 6 corrections on Canvas by 10 ppm
- Compile HW 12 for André
- For problem. A1, see. Tasks post on Piazza for Mathematica help
13.3 Fundamental Theorem of Line Integrals (cont)

Recap
If. \vec{F} is a conservative vector field.

- $\vec{F}=\nabla f$ for some scalar function f
$-\int_{c} \vec{F} \cdot d \vec{r}=f(\vec{r}(b))-f(\vec{r}(a))$
- $\int_{C} \vec{F} \cdot d \vec{r}$ is path independent.
- and. C is a simple closed. curve, then $\int_{c} \vec{F} \cdot d \vec{r}=0$

These properties are so nice, but how can we tell that \vec{F} is conservative without being told? To answer this, we need some new vocabulary.

- A region. D in \mathbb{R}^{2} is open if it does not include the boundary ex) Which region is open?

$$
x^{2}+y^{2} \leq 1
$$

$$
x^{2}+y^{2}<1
$$

not open

- A region D is simply-connected if it consists of one piece with no holes

not simply. connected

simply connected.

Testing for conservativeness
Let. $\vec{F}=\langle P, Q\rangle$, be a vector field on an open, simply-connected region . D Suppose P and Q have continuous. first derivatives. Then
if $P_{y}=Q_{x}$ everywhere on D, then \vec{F} is conservative
ex 5) $1 s \quad \vec{F}_{0}=e^{x} \cos y i+e^{x} \sin y j$ a conservative vector field?

$$
\begin{array}{ll}
P_{0}=e^{x} \cos y & Q=e^{x} \sin y \\
P_{y}=-e^{x} \sin y & Q_{x}=e^{x} \sin y
\end{array}
$$

$$
P_{y} \neq Q_{x} \text { so } \vec{F}_{0} \text { is }
$$

not. conservative.
ex 6) Is $\vec{F}=\left(2 x y+y^{-2}\right) i+\left(x^{2}-2 x y^{-3}\right) j$ a conservative vector field when $y>0$?

$$
\dot{P}=2 x y+y^{-2} \quad Q=x^{2}-2 x y^{-3}
$$

$$
P_{y}=2 x-2 y^{-3} \quad Q_{x}=2 x-2 y^{-3}
$$

$P_{y}=Q_{x}$ for all x, y except. $y=0$. But our domain is $y>0$, so we don't. need to. worry about $y=0$. Lastly, the domain $y>0$. is open and simply-connected. So. we conclude \vec{F}. is conservative.

This problem demonstrates that we must check that $P_{y}=Q_{x}$ and D is open and simply-connected before concluding that \vec{F} is conservative.
ex 7) (a) Let $\vec{F}=\left\langle\frac{-y}{x^{2}+y^{2}} ; \frac{x}{x^{2}+y^{2}}\right\rangle$. Does $P_{x}=Q_{x}$?

$$
\begin{aligned}
P_{0} & =\frac{-y}{x^{2}+y^{2}} \\
P_{y} & =\frac{\left(x^{2}+y^{2}\right)(-1)-(-y)(2 y)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{-x^{2}-y^{2}+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

(b) Compute $\int_{c} \vec{F} \cdot d \vec{r}$ where C is the unit circle oriented counterclockwise. Is \vec{F} conservative?

Parametrize $C \quad \vec{r}\left(t_{0}\right)=\left\langle\cos t_{0}, \sin t_{0}\right\rangle \quad 0 \leqslant t \leq 2 \pi$.
${ }^{C}$ Compute ${ }^{\circ} \vec{r}^{\prime}(t)$.

$$
\vec{r}^{\prime}(t)=\langle-\sin t, \cos t\rangle
$$

Compute $\dot{\vec{F}}(\vec{r}(t)): \dot{r}(t)$

$$
\begin{aligned}
& \left\langle-\sin t{ }_{2} \cos t\right\rangle_{0} \cdot\langle-\sin t \cos t\rangle_{0} \\
& \sin ^{2} t+\cos ^{2} t \\
& \int_{0}^{2 \pi} 1 d t=2 \pi
\end{aligned}
$$

Write integral.
 simple closed. curve C. should be , zero.
13.4 Green's Theorem

First, some new vocabulary

- Let D be a region in \mathbb{R}^{2}. Then the boundary of D, denoted ∂D, is the curve that encloses. D ex). Trace. ∂D for each region D

- Let C be a simple closed curve in \mathbb{R}^{2} and let D be the region enclosed by C. We. say C is positively-oriented if D is on the left of C as we travel along C. ex) Mark the direction of C that makes it positively-oriented.

Green's. Theorem.
Let. C. be a positively-oriented, piecenise smooth, simple closed curve.
Let. D, be the region enclosed by C.
Let $\vec{F}=\langle P, Q\rangle$ and P, Q have continuous partial derivatives on an open region containing. D
Then

$$
\int_{c} \vec{F}: d \vec{r}=\iint_{D} Q_{x}-P_{y} \cdot d A
$$

Alternative notations:
(1) $\oint_{a D} \vec{F}: d \vec{r}=\iint_{D} Q_{x}-P_{y} d A$ \oint means "line integral over closed curve".
(2) $\oint_{c} \vec{F} \cdot d \vec{r}=\iint_{D} Q_{x}-P_{y} d A$.
tiny arrow gris orientation.
(3) $\int_{c} P d x+Q_{d y}=\iint_{D} Q_{x}-P_{y} d A$

The magic of Green's. Theorem is that it gives us the power to switch between a line integral and a double integral. We can choose whatever is most convenient.
ex 1) Compute $\int_{c} \vec{F}$: $d \vec{r}$ for $\vec{F}=\left\langle\left\langle y, x^{2}\right\rangle\right.$ over the rectangular curve C.
Hmm, if \vec{F}_{1} is. conservative. then this integral is. zero! $B_{u} P_{P}=x$ and $Q_{x}=2 x$ so \vec{F}_{0} isn't conservative. Shucks.

The curve C is complicated. (made of 4. separate. lines!) but the region inside is nice. Use Green's theorem!

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\iint_{D} Q_{x}-P_{y} d A \\
& =\iint_{D} 2 x-x d A \\
& =\iint_{D} x_{0} d A \\
& =\int_{0}^{3} \int_{0}^{1} \cdot x \cdot d y d x \\
& =\left.\frac{1}{2} x^{2}\right|_{0} ^{3} \\
& =9 / 2
\end{aligned}
$$

ex 2) Evaluate $\int_{0} \vec{F} \cdot d \vec{r}$ for $\vec{F}=\left\langle e^{x}+x^{2} y, e^{y}-x y^{2}\right\rangle$ and C is the circle of radius 5 oriented clockwise
Hmm, if \vec{F} is conservative, then this integral is zero! But, $P_{y}=x^{2}$, and, $Q_{x}=-y^{2}$ so \vec{F}_{0} isn't conservative. Shucks.
The curve C is nice and has an easy parametrization $\vec{F}(t)=\langle 5 \cos t,-5 \sin t\rangle .0 \leqslant t \leq 2 \pi$.
so. maybe I can compute the line. integral directly as $\int_{c} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot r_{1}^{\prime}(t) d t$
But $\vec{F}(F(t)) \cdot \vec{r}^{\prime}(t)$. looks. complicated.
The region D.enclosed by C is nice, so we can try Green's theorem

Notice that our curve. C is oriented negatively and we'll. need to. introduce - a negative sign to fix this

$$
\oint_{c} \vec{F} \cdot d \vec{d}=-\oint_{c} \vec{F} \cdot d \vec{r}=-\iint_{D} Q_{x_{0}}-P_{y} d A .
$$

$$
=-\iint_{D}-y^{2}-x^{2} d A
$$

$$
=\iint_{D} x^{2}+y^{2} d A
$$

$$
\left\{\begin{array}{l}
\text { Remember, } \\
d A=d y d x \text { in rectangular } \\
d A=\text { raid } d \theta \text { in polar }
\end{array}\right.
$$

$$
=\frac{5^{4}}{4}: 2 \pi=\frac{625 \pi}{2}
$$

Friday November 13
Reminders

- All. Week 12 WebAssign ane before midnight on Sunday
13.4 Green's Theorem

Recap
Let $\vec{F}=\langle P, Q\rangle$. be a vector field, C be a closed curve, and D be the region inside C.

- If \vec{F} is conservative, $\oint_{c} \vec{F} \cdot d \vec{r}=0$.
- For all $\vec{F}, \oint_{C \rightarrow D D} \vec{F} \cdot d \vec{r}=\iint_{D} Q_{x}=P_{y} d A$
ex) Evaluate $\oint_{c} \vec{F} \cdot d \vec{r}$ for $\vec{F}(x, y)=\left\langle x e^{-2 x}, x^{4}+2 x^{2} y^{2}\right\rangle$ where C consists of the unit circle oriented. clockwise and. $x^{2}+y^{2}=4$ oriented counterclockwise.

Sketch the curve C.

Is \vec{F}. conservatue?. $\quad P_{y}=0, Q_{x}=.4 x^{3}+4 x y^{2} . \quad$ Not. conservative
Notice C is the positively oriented boundary of the ring-shaped region D between the circles. Try Green's. theorem

$$
\begin{aligned}
\oint_{C} \dot{\vec{F}}_{0} \cdot d \vec{r} & =\iint_{D} Q_{x_{0}}-P_{y_{0}} d A \\
& =\iint_{D} 4 x^{3}+4 x y^{2} d A \\
& =\iint_{D} 4 x\left(x^{2}+y^{2}\right) d A \\
& =\int_{D}^{2 \pi} \int_{1}^{2}(4 r \cos \theta)\left(r^{2}\right) \cdot r d r d \theta \\
& =4 \int_{0}^{2 \pi} \cos \theta \cdot \int_{1}^{2} r^{4} d r d \theta \\
& =0
\end{aligned}
$$

Heres a sneaky way to. compute the area of a region using Green's. Theorem!
Recall that $\iint_{D} 1 d A$ computes the area of D.
Notice that. if. we happened to have a vector field $\vec{F}=\langle P, Q\rangle$ such that $Q_{x}-P_{y}=1$, then Green's theorem would say

$$
\oint_{\partial D} \vec{F} \cdot d \vec{r}=\underbrace{\iint_{D} 1 d A}_{\text {Area of } D}
$$

So. if we invent a vector field $\vec{F}=\langle P, Q\rangle$ with $Q_{x}-P_{y}=1$, we could use Green's theorem to compute area. ex 4) Find a vector field $\vec{F}_{=}=\langle P, Q\rangle$. such that. $Q_{x}=P_{y}=1$

There are infinitely many. possibilities, and here are a. few.

$$
\left.\vec{F}=\langle\dot{0}, \dot{x}\rangle \quad \dot{\vec{F}}=\langle-y, \dot{0}\rangle \quad \quad \dot{\vec{F}}=\dot{\langle }-\frac{i}{2} y, \frac{1}{2} x\right\rangle
$$

ex) Calculate the area inside the curve C given by $\vec{r}(t)=\langle\sin 2 t, \sin t\rangle$ for $0 \leq t \leq \pi$, shown below

$$
\begin{aligned}
& \text { Area }=\iint_{D^{\circ}} 1 d A=\iint_{D} Q_{x_{0}}-P_{y} d A \quad \text { if } Q_{x}-P_{y}=1 \\
&=\oint_{2 D^{\circ}} \vec{F} \cdot d \vec{r} \\
& \text { Weill use } \vec{F}=\left\langle 0_{l} x\right\rangle \text { if } \vec{F}=\langle P, Q\rangle \text { satisfies } Q_{x}=P_{y}=1
\end{aligned}
$$

Compute $\vec{r}^{\prime}(t) \quad r^{\prime}(t)=\langle 2 \cos 2 t, \cos t\rangle$
Compute $\dot{\vec{F}}(\vec{r}(t)): \vec{r}^{\prime}(t) \quad\langle\langle 0, \sin 2 t\rangle \cdot\langle 2 \cos 2 t, \cos t\rangle$ $\sin (2 t) \cos (t)$

Write integral

$$
\begin{aligned}
& \int_{0}^{\pi} \sin (2 t) \cos (t) d t \\
& \int_{0}^{\pi} 2 \sin t \cos t \cos t d t \quad \begin{array}{l}
u=\cos t \\
-\int_{1}^{=1} 2 u^{2} d u=-\sin t d t
\end{array}
\end{aligned}
$$

13.5 Curl and Divergence

There are two more kinds of derivatives to learn!
The divergence of a vector field $\vec{F},\langle P, Q, R\rangle$ is denoted $\nabla \cdot \vec{F}$, It. is calculated via

$$
\nabla \cdot F=P_{x}+Q_{y}+R_{z}
$$

The curl of a vector field $\vec{F}=\langle P, Q, R\rangle$ is denoted. $\nabla \times \vec{F}$ It. is calculated via

$$
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\overrightarrow{1} & \vec{j} & \vec{k} \\
\partial \partial \partial & \partial / \partial & \partial / \partial z \\
P & Q & R
\end{array}\right|
$$

Note: If you haven't learned the formulas for divergence and curl yet, go to Piazza > Tasks. for. Week. 12> Thursday Nov. 12. and use the. links to Learn and practice the formulas.

This excellent video will help us get more intuition for what div and curl mean https://youtu.be/rB83DpBJQse

Useful facts about curl and div

- If \vec{F} is conservative, then curl of \vec{F} is zero. In other words, $\nabla \times(\nabla f)=\overrightarrow{0}$

Intuition: If $z=f(x, y)$ is a surface, then ∇f is a vector field where arrows point "uphill". in the direction of greatest increase. That vector field can't have any "swirly" points, since that would mean you can walk on a loop, ending where you started, and somehow be going "uphill". the whole time. That's impossible!

Escher defies reality

- The divergence of the curt of \vec{F} is zero In other words, $\nabla \cdot(\nabla \times \vec{F})=0$
- The divergence of the gradient of f, denoted $\nabla \cdot \nabla f=\nabla^{2} \cdot f$ is called the Laplace operator
- If . curl $\vec{F}=0$, we say \vec{F}. is irrotational
- If div $\vec{F}=0$, we say \vec{F}. is incompressible

We'll use curl and dir to upgrade some earlier ideas Notice that if we turn $\vec{F}=\langle P, Q\rangle$ into a 3D. vector field by tacking on a. zero in the z-component, then.

$$
\begin{aligned}
\operatorname{curl}\langle P, Q, 0\rangle & =\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & 0
\end{array}\right| \\
& =\left(0-Q_{z}\right) \vec{\imath}-\left(0-P_{z}\right) j+\left(Q_{x}-P_{y}\right) \vec{k}
\end{aligned}
$$

P and Q didn't have any z-dependence

$$
=\left(Q_{x}-P_{y}\right) \vec{k}
$$

- Test for conservativeness, upgraded.

If a vector field $\vec{F}=\langle P, Q\rangle$ is conservative, then $Q_{x}=P_{y}$ (old. version).

$$
\vec{F}=\langle P, Q, R\rangle \quad \text {. then } \operatorname{curl} \vec{E}=0 \quad \text { (upgrade!) }
$$

If $Q_{x}=P_{y}$ on a simply-connected domain, then \vec{F}_{0} is conservative.

$$
\text { curl. } \vec{F}^{\prime}
$$

- Green's Theorem, upgraded

$$
\oint_{\partial D} \vec{F}: d \vec{r}_{0}=\iint_{D} Q_{x}-P_{y} d A \cdot \iint_{D} C u r l \vec{F}: \vec{k} d A
$$

Ok this one is not really an upgrade since it's actually more work to compute curl \vec{F}. Honest upgrade coming soon.

Monday November 16
Reminders

- WebAssign 13.5
- AW. 13 . section 13.5 and A1
- Study for Check-in 20.
- Be able to state. Green's. theorem
- Redo examples from 13.4 notes
13.5 Curl and divergence (cont)

Recap
The curl of a vector field $\vec{F}=\langle P, Q, R\rangle$ is $\nabla x \cdot \vec{F}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & \cdot R\end{array}\right|$
The divergence of a vector field $\vec{F}=\langle P, Q, R\rangle$ is $\nabla \cdot \vec{F}=P_{x}+Q_{y}+R_{z}$
ex 1) Is there a vector field \vec{G} on \mathbb{R}^{3} such that $\operatorname{curl} \vec{G}=\langle x \sin y, \cos y, z-x y\rangle$?
We. know that for any .vector field e \vec{F}, it is always the that. $\operatorname{div}(\operatorname{curl}, \vec{F})=0$. So. if. $\left\langle x \sin y, \cos y_{0}, z=x y\right\rangle$ were. the curl of some other vector field \vec{G}_{0}, then its divergence should. be zero.

$$
\begin{aligned}
\operatorname{div}(\langle x \sin y, \cos y, z-x y\rangle) & =\nabla \cdot\langle x \sin y, \cos y, z-x y\rangle \\
& =\sin y-\sin y+1
\end{aligned}
$$

$=1 \neq 0$. No this vector field is not the. curl of some. other vector field.
ex 2) Compute the curl of $\vec{F}=\langle y,-x, 0\rangle$ and $\vec{G}=\langle-y, x, 0\rangle$. What's the difference?

$$
\operatorname{curl} \vec{F}=\nabla \times F=\left|\begin{array}{ccc}
\overrightarrow{1} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & -x & 0
\end{array}\right|=\langle 0,0,-2\rangle \quad \operatorname{curl} \vec{G}=\nabla \times G=\left|\begin{array}{lll}
i & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y & x & 0
\end{array}\right|=\langle 0,0, \quad 2\rangle
$$

A she of fer for ch

A stand fag for faced z

I notice that when. the. vector field describes a circular flow, the curl changes sign when the flow changes direction.

Fact: The curl of \vec{F} is a vector whose direction is governed by the right-hand rule.
Let the fingers of your right hand follow the rotation motion described by the vector field. Then your thumb will point in the direction of the curl vector.
ex) (from textbook)
12. Let f be a scalar field and \mathbf{F} a vector field. State whether each expression is meaningful. If not, explain why. If so, state whether it is a scalar field or a vector field.
a. $\operatorname{curl} f$
b. $\operatorname{grad} f$
c. $\operatorname{div} \mathbf{F}$
d. $\operatorname{curl}(\operatorname{grad} f)$ vector field
scalar field
e. $\operatorname{grad} \mathbf{F}$ nonsense
f. $\operatorname{grad}(\operatorname{div} \mathbf{F}) \quad$ vector field
g. $\operatorname{div}(\operatorname{grad} f)$
h. $\operatorname{grad}(\operatorname{div} f)$
i. $\operatorname{curl}(\operatorname{curl} \mathbf{F})$
j. $\operatorname{div}(\operatorname{div} \mathbf{F})$
k. $(\operatorname{grad} f) \times(\operatorname{div} \mathbf{F})$

1. $\operatorname{div}(\operatorname{curl}(\operatorname{grad} f))$
nonsense
vector field
vector field

Mixed problems (since Quiz 8 is cumulate)
Let A be the surface $Z=x+y$ and B be the surface $x^{2}+y^{2}=1$
1.) Write an integral that computes the arc length of the intersection of A and B

The general shape is a cylinder -cut by a plane, so the projection. onto the $x y$-plane is the unit circle

$$
\begin{aligned}
\text { Arc length } & =\int 1 d s \\
& =\int_{a_{0}^{b}}\left|\vec{F}^{\prime}(t)\right| d t
\end{aligned}
$$

$$
\begin{aligned}
\vec{r}(t) & =\langle\cos t, \sin t, \sin t+\cos t\rangle, 0 \leq t \leq 2 \pi \\
\vec{r}^{\prime}(t) & =\langle-\sin t, \cos t, \cos t-\sin t\rangle \\
\left|\vec{r}^{\prime}(t)\right| & =\left(\sin ^{2} t+\cos ^{2} t+\cos ^{2} t-2 \sin t \cos t+\sin ^{2} t\right)^{1 / 2} \\
& =(2+2 \sin t \cos t)^{1 / 2}
\end{aligned}
$$

$$
\text { Arc length }=\int_{0}^{2 \pi} \sqrt{2-2 \sin t \cos t} d t
$$

2.) Write an integral that computes the surface area of the part of B below A and above $z=0$.

$$
\stackrel{\rightharpoonup}{r}(u, v)=\langle\cos u, \sin u, . v\rangle
$$

$$
-\frac{\pi}{4_{0}} \leq u_{0} \leq \frac{3 \pi}{4}, 0 \leq v \leq \sin u+\cos u_{0}
$$

$$
\begin{aligned}
\text { Surface area } & =\iint_{D} 1 d S \\
& =\iint_{D}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A
\end{aligned}
$$

$$
\stackrel{\rightharpoonup}{r}_{u}=\langle-\sin u, \cos u, 0\rangle
$$

$$
\vec{r}_{v}=\langle 0,00, .1\rangle
$$

$$
\left|\vec{r}_{u} \times \vec{r}_{v}\right|=1
$$

3.) Write an integral that. computes the volume of the solid inside B, below A and above $z=0$.

Solid of interest

Domain of integration

$$
\begin{aligned}
\text { Volume under }_{\text {a surface }} & =\iint_{D} f(x, y) d A \\
& =\iint_{D} x+y d A \\
& =\int_{\frac{3 \pi}{4} \frac{3 \pi}{4}}^{\int_{0}^{1}(r \cos \theta+r \sin \theta)} r d r d \dot{\theta}
\end{aligned}
$$

4.) Write an integral that computes the work done by $\vec{F}=\left\langle 3 y+3 x^{2} y, 3 x+x^{3}\right\rangle$ on a particle traveling the curve in problem 1 in the counterclockwise direction. \vec{F} is conservative and the path is a simple. closed curve, so the work is zero.
5.) Find the minimum value of. $f(x, y)=4 x y$ subject to the constraint B.

$$
\begin{aligned}
& \nabla f^{\circ}=\langle 4 y, 4 x\rangle \\
& \nabla g=\langle 2 x, 2 y\rangle \\
& \nabla f=\lambda \nabla g
\end{aligned}
$$

$$
\begin{aligned}
& f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=2 \\
& f\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=2 \\
& f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=-2 \\
& f\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=-2
\end{aligned}
$$

crit pts: $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$

Tuesday November 17
Reminders

- Review how to compute surface area (section 12.6) $\iint_{D}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d A$. (more important).

$$
\iint_{D}^{D} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A \text {. (less important) }
$$

Summary of facts about $\int_{c} \vec{F} \cdot d \vec{r}$ and vector fields If \vec{F} is conservative
...curl $\vec{F}=\overrightarrow{0}$
... \vec{F} has a potential function f such that $\nabla f=\vec{F}$
$\ldots \int_{c} \vec{F} \cdot d \overrightarrow{r_{0}}=f(\vec{F}(b))-f(\vec{r}(a))$
... $\int_{c} \vec{F} \cdot d \vec{r}$ is path-independent
$\ldots \oint_{c} \vec{F} \cdot d \vec{r}=0$ for a simple closed curve C
If. curl $\vec{F}=\overrightarrow{0}$ on a simply connected region, then \vec{F} is conservative.
In all circumstances
$\ldots \operatorname{curl}(\nabla f)=\overrightarrow{0}$
$\ldots \operatorname{div}(c u r \mid \vec{F})=0$
... $\oint_{\partial D} \vec{F} \cdot d \vec{r}=\int_{\int_{D}} Q_{x}-P_{y} d A$ (Green's Theorem)
$\ldots \int_{c} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)): \vec{r}^{\prime}(t) d t$

Go to student.desmos.com and use code QDC AC8
Do the "Conservative or not" activity

Check-in 20
Use Greens theorem to evaluate $\int_{c} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left\langle\sqrt{1+x^{3}}, 2 x y\right\rangle$ and C is the triangle with vertices $(0,0),(1,0)$, and $(1,3)$, oriented clockwise.

Draw C

Is \vec{F} conservative?

$$
\begin{array}{ll}
Q=2 x y & P=\sqrt{1+x^{2}} \\
Q_{x}=2 y \quad & P_{y}=0
\end{array} \quad \text { No, not conservative, so we cant conclude } \oint_{c} \vec{F} \cdot d \vec{r}=0
$$

Use Green's theorem
Our. curve, C. has the negative orientation relative .to D, so we. must correct with a negative sign.

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r} & =-\iint_{D} Q_{x}-P_{y} d A \\
& =-\int_{0}^{1} \int_{0}^{3 x} \cdot 2 \cdot y d y d x \\
& =-3
\end{aligned}
$$

Wednesday November 18

- Compile HW 13 for André.
13.6 Surface integrals

A surface integral is a double integral where the domain of integration is some surface S There are two different kinds. one where we integrate a scalar function and one where we. integrate a vector function.

Example
Let. $f(x, y, z)$ be the population density at point (x, y, z). Then the integral of $f(x, y, z)$ over a surface computes the total population on the surface.

Example
Let $\vec{F}(x, y, z)$ be a vector field depicting the rate of flow of some fluid. Then the integral. of \vec{F} over the surface gives the rate of flow of the fluid through the surface.

Surface integral of. scalar function - intuition.

- Surface S with parametrization

Area of tiny parallelogram. patch of surface S

$$
\left|\stackrel{\rightharpoonup}{r}_{u} \times \dot{r}_{v}\right|
$$

Surface integral of scalar function - computation

$$
\iint_{S} f(x, y, z) d S=\iint_{u, v \in D} f(\dot{\vec{r}}(u, r)) \underbrace{\left|\vec{r}_{u} \times \vec{r}_{r}\right| d A}_{d S_{0}, \text { a tiny patch of } S}
$$

If the surface S happens to be os the form $z=g(x, y)$, then

$$
\iint_{S} f(x, y, z) d S=\iint_{u, v \in D} f(u, v, g(u, v)) \underbrace{\sqrt{z_{x}^{2}+z_{y}^{2}+1} d A}
$$

-dSt , a tiny patch of S.
ex 1) Evaluate $\iint_{S} x^{2} d S$ where S is the sphere $x^{2}+y^{2}+z^{*}: 9$

Parametrize S. Use spherical-inspired parametrization. with $\rho=3, \theta$ and ϕ varying

$$
\vec{r}_{0}(\theta, \phi)=\left\langle 3 \sin \phi \cos \theta, 3 \sin \phi \sin \theta_{0}, 3 \cos \phi_{0}\right\rangle, 0 \leq \theta \leq 2 \pi 0_{0}, 0_{0} \leqslant \phi \leqslant \pi
$$

Compute $\left|\vec{r}_{\theta} \times \vec{r}_{\phi}\right|$.

$$
\begin{aligned}
\vec{r}_{\theta} & =\langle-3 \sin \phi \sin \theta, 3 \sin \phi \cos \theta, 0 \\
\vec{r}_{\phi} & =\langle-3 \cos \phi \cos \theta, 3 \cos \phi \sin \theta,-3 \sin \phi\rangle \\
\vec{r}_{\theta} \times \vec{r}_{\phi} & =\left\langle-9 \sin ^{2} \phi \cos \theta,-9 \sin ^{2} \phi \sin \theta,-9 \sin \phi \cos \phi \cos ^{2} \theta-9 \sin \phi \cos \phi \sin ^{2} \theta\right\rangle \\
& =\left\langle-9 \sin ^{2} \phi \cos \theta_{0},-9 \sin ^{2} \phi \sin \theta,-9 \sin \phi \cos \phi\right\rangle \\
\left|\vec{r}_{\theta \theta} \times \vec{r}_{\theta}\right| & =\left(81 \sin ^{4} \phi \cos ^{2} \theta+81 \sin ^{4} \phi \sin ^{2} \theta+81 \sin ^{2} \phi \cos ^{2} \phi\right)^{1 / 2} \\
& =\left(81 \sin ^{4} \phi+81 \sin ^{2} \phi \cos ^{2} \phi\right)^{1 / 2} \\
& =\left(81 \sin ^{2} \phi\left(\sin ^{2} \phi+\cos ^{2} \phi\right)\right)^{1 / 2} \\
& =9 \sin \phi
\end{aligned}
$$

Write integral

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{2 \pi}(\underbrace{3 \sin \phi \cos \theta}_{x})^{2} \underbrace{9 \sin \phi}_{\left|\vec{r}_{\theta} \times \vec{r}_{\phi}\right|}) d \theta d \phi \\
& 81 \int_{0}^{\pi} \sin ^{3} \phi \int_{0}^{2 \pi} \cos ^{2} \theta \cdot d \theta d \phi \\
& 81 \pi \cdot \int_{0}^{\pi} \sin ^{3} \phi \cdot d \phi \\
& 81 \pi \int_{0}^{\pi} \cdot \sin \phi\left(1-\cos ^{2} \phi\right) d \phi \\
& -81 \pi \int_{1}^{-1} 1-u^{2} d u \\
& -81 \pi\left[u-\frac{1}{3} u^{3}\right]_{1}^{-1} \\
& -81 \pi \cdot\left[-1+\frac{1}{3}-1+\frac{1}{3}\right] \\
& 27: 4 \pi
\end{aligned}
$$

$108 . \pi$
ex 2) Evaluate $\iint_{S} x^{2} z^{2} d S$ when S is the part of the cone $z^{2}=x^{2}+y^{2}$ between $z=1$ and $z=3$

Sketch and. parametrize. S.

$$
\text { - } \vec{r}(u, v)=\left\langle u, v, \sqrt{u^{2}+v^{2}}\right\rangle \text {. }
$$

Use the fact that $z_{0}=\sqrt{x^{2}+y^{2}}$. is a function of randy.

$$
\vec{r}(u, v)=\left\langle u, v, \sqrt{u^{2}+v^{2}}\right\rangle
$$

$$
\begin{aligned}
\left|\vec{r}_{u_{0}} \times \vec{r}_{v}\right|_{0} & =\sqrt{\left(\frac{\partial z}{\partial u}\right)^{2}+\left(\frac{\partial z}{\partial v}\right)^{2}+1} \\
& =\sqrt{\left(\frac{u}{\sqrt{u^{2}+v^{2}}}\right)^{2}+\left(\frac{v}{\left.\sqrt{u^{2}+v^{2}}\right)^{2}+1}\right.} \\
& =\sqrt{\frac{u_{0}^{2}+v^{2}}{u^{2}+v^{2}}+1} \\
& =\sqrt{2}
\end{aligned}
$$

- Write integral

$$
\begin{aligned}
& \int_{u, v \in D} \int_{x^{2} z^{2}}^{u^{2}\left(u^{2}+v^{2}\right)} \underbrace{(\sqrt{2})}_{\left|\vec{r}_{n} \times \vec{r}_{v}\right|} d A \\
& \sqrt{2} \int_{0}^{2 \pi} \int_{1}^{3} \underbrace{r^{2} \cos ^{2} \theta \cdot r^{2}}_{x^{2} z^{2}} \cdot \underbrace{r d r d \theta}_{d A \text { in polar }} \\
& \sqrt{2} \int_{0}^{2 \pi} \int_{1}^{3} r^{5} \cos ^{2} \theta d r d \theta \\
& \sqrt{2} \int_{0}^{2 \pi} \cos ^{2} \theta \int_{6}^{3} r^{5} d r d \theta \\
& \sqrt{2} \pi \frac{1}{6}\left(3^{6}-1\right)
\end{aligned}
$$

$$
\frac{364 \pi \sqrt{2}}{3}
$$

ex 3) Evaluate $\iint_{S} y z d S$ where S is the part of the plane $x+y+z=1$ in the first octant

Sketch and parameterize S

$$
\begin{aligned}
& z=1-x-y \\
& \vec{r}(u, v)=\langle u, v, 1-u-v\rangle
\end{aligned}
$$

Compute $\left|\vec{r}_{n} \times r_{v}\right|=\sqrt{(-1)^{2}+(-1)^{2}+1}=\sqrt{3}$
Write integral $\iint_{n, v \in D} V(1-u-v) \sqrt{3} d A$

$$
\begin{aligned}
& \sqrt{3} \int_{0}^{1} \int_{0}^{1-v} v(1-u-v) d u d v \\
& \sqrt{3} \int_{0}^{1} \int_{0}^{1-v} v-u v^{2}-v^{2} d u d v \\
& \sqrt{3} \int_{0}^{1} \int^{1}\left[u-\frac{1}{2} u^{2} v-v^{2} u\right]_{0}^{1-v} d v \\
& \sqrt{3} \int_{0}^{1}\left(1-v v^{2}-\frac{1}{2}(1-v)^{2} v^{2}-v^{2}(1-v) d v\right. \\
& \sqrt{3} / 24
\end{aligned}
$$

A surface has 2 possible orientations, if it is orientable at all.
example: sphere

normal rectors to the surface of sphere oriented "outward".

or onented" "inward".
example". non-closed surface

not
onentable at all

A Klein bottle does not have distinct. "inside" and "outside"

Friday November 20
Reminders

- All. Week 13 WebAssign due Sunday before midnight.
- HW. 14 section 13.6. (relevant to Quiz 7)
- Study for Quizzes 7 and 8
13.6 Surface integrals (cont)

Recap
From yesterdays project: If we think of the arrows of vector field \vec{F}. as representing the velocity of a flowing. liquid, then we can calculate the flux. (flow rate). through an object.

The component of \vec{V} that actually. passes through C is the orthogonal component $\vec{v} \cdot \vec{n}$. Then the flux across all of C is

$$
\int_{c} \dot{\vec{F}}_{0} \cdot \vec{n} d s
$$

But real-life. filters are surfaces in. 3D space, not. just a flat curve in 2D space! So let's develop the 3D version.

Flux - the intuition

The unit normal to the surface is $\frac{\vec{r}_{a} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times r_{v}\right|}=\vec{n}$

The component of \vec{F} orthogonal. to S is $\vec{F} \cdot \vec{n}$

Then the total flux across. the surface S is $\iint_{S} \vec{F} \cdot \vec{n} d S$

Flux - the computation
Flux of. \vec{F} across S with some orientation

These scalars cancel!

$$
\iint_{u, v \in D} \vec{F}(\vec{r}(u, r)) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right)^{0} d A
$$

its opposite. $-\left(\vec{r}_{u} \times \vec{r}_{v}\right)$ in order to
desired choice of "outward." direction
ext) Compute the fun of $\vec{F}=\left\langle x, y, z^{4}\right\rangle$ across the surface S, where S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ beneath $z=1$. with downward orientation

Sketch and.
parametrize S

Compute $\vec{r}_{u} \times \vec{r}_{v}$ and verify orientation

$$
\begin{aligned}
& \vec{r}(u, v)=\left\langle u_{0}, v, \sqrt{u^{2}+v^{2}}\right\rangle \\
& \vec{r}_{u}=\left\langle 1,0, \frac{u}{\sqrt{u^{2}+v^{2}}}\right\rangle \\
& \vec{r}_{v}=\left\langle 0,1, \frac{v}{\sqrt{u^{2}+v^{2}}}\right\rangle \\
& \vec{r}_{u \times} \times \vec{r}_{v 0}=\left\langle\frac{-u}{\sqrt{u_{0}^{2}+v^{2}}}, \frac{-v}{\sqrt{u^{2}+v_{0}^{2}}}, 1\right\rangle
\end{aligned}
$$

Notice the z-component is spositive! So this normal vector must point upward, opposite to the direction we want! Introduce. a negative sign to fix this.
our normal : $\left\langle\frac{{ }^{u}}{\sqrt{u^{2}+v^{2}}}, \frac{v^{2}}{\sqrt{u^{2}+v_{2}^{2}}},-1\right\rangle$
Compute $\dot{\vec{F}}\left(\vec{r}_{0}\left(u, v_{2}\right) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right)^{0}\right.$

$$
\begin{aligned}
\vec{F}\left(\vec{r}_{0}(u, v)\right) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) & =\left\langle u, v,\left(u^{2}+v^{2}\right)^{2}\right\rangle \cdot\left\langle\frac{u}{\sqrt{u^{2}+v^{2}}}, \frac{v}{\sqrt{u^{2}+v^{2}}},-1\right\rangle \\
& =\frac{u^{2}}{\sqrt{u^{2}+v^{2}}}+\frac{v^{2}}{\sqrt{u^{2}+v^{2}}}-\left(u^{2}+v^{2}\right)^{2} \\
& =\sqrt{u^{2}+v^{2}}-\left(u^{2}+v^{2}\right)^{2}
\end{aligned}
$$

Write integral and. compute

$$
\begin{aligned}
\iint_{S} \dot{\vec{F}} \cdot \vec{n} d S_{0} & =\iint_{u_{v \in D}} \sqrt{u_{0}^{2}+v^{2}}-\left(u_{0}^{2}+v^{2}\right)^{2} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(r-r^{4}\right) r d r d \theta \\
& =2 \pi \int_{0}^{1} r^{2}-r^{5} d r \\
& =2 \pi\left(\frac{1}{3}-\frac{i}{6}\right) \\
& =\frac{\pi}{3}
\end{aligned}
$$

ex s) A fluid has density $870 \mathrm{~kg} / \mathrm{m}^{3}$. and flows with vebacty. $\vec{v}=z \vec{\Gamma}+y^{2} \cdot \vec{J}+x^{*} \vec{k}$ where x, y, z are measured in meters and. the components of \vec{v} are in meters per second. Find. the rate of flow outward through the cylinder. $x^{2}+y^{2}=4,0 \leq z \leq 1$.

Sketch and.
parametrize S

$$
\begin{aligned}
& \vec{r}\left(u_{n} v\right)=\left\langle 2 \cos u_{,} 2 \sin u, v\right\rangle \\
& \quad 0 \leq u \leqslant 2 \pi, \quad 0_{0} \leq v \leq 1
\end{aligned}
$$

Compute $\vec{F}_{u} \times \vec{k}_{v}$ and verify orientation

$$
\begin{aligned}
& \vec{r}(u, v)=\langle 2 \cos u, 2 \sin u, v\rangle \\
& \vec{r}_{u}=\langle-2 \sin u, 2 \cos u, 0 \\
& \vec{r}_{v}=\left\langle\begin{array}{cc}
0 & 0,1
\end{array}\right\rangle \\
& \vec{r}_{u} \times \vec{r}_{v 0}=\langle 2 \cos u, 2 \sin u, 0
\end{aligned}
$$

Notice if $u=0$, then $\vec{r}_{u} \times \vec{r}_{v}$ is the vector $\langle 2,0,0\rangle$. This is indeed the "out ward" direction No correction needed

Compute $\vec{F}\left(F_{1}(u, n)\right) \cdot\left(\vec{r}_{n} \times \vec{r}_{v}\right)$

$$
\begin{aligned}
\stackrel{\rightharpoonup}{F}\left(\vec{r}_{0}(u, v)\right) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) & =\left\langle v, 4 \sin ^{2} u, 4 \cos ^{2} u\right\rangle \cdot\langle 2 \cos u, 2 \sin u, 0\rangle \\
& =2 v \cos u+8 \sin ^{3} u
\end{aligned}
$$

Write integral and compute

$$
\left.\begin{array}{rl}
\iint_{S} \overrightarrow{\vec{F}}_{0} \cdot \vec{n} d S & =\int_{0}^{10} \int_{0}^{2 \pi} v \cos u+4 \sin ^{3} u d u d v \\
& =\int_{0}^{1} v \int_{0}^{2 \pi} \cos u d u d v+\int_{0}^{4} \int_{0}^{2 \pi} 4 \sin ^{3} u d u d v \\
& =0 \mathrm{~m}^{3} / \mathrm{s}
\end{array}\right\}
$$

An aside about boundaries

What is the boundary of each object?
(a)

(b)

(c) paraboloid cup. (shell).

(d)

unit sphere (a shell, not filled)
(e) solid ball (filled).

(g) unit circle (not filled)

(h) line segment \qquad
(i) solid cone. (filled inside)

(a)

(b)

(c) paraboloid cup (shell).

(d)
 unit sphere (a shell, not filled)
(e) solid ball (filled)

shell

(g). unit circle (not filled)

(h) line segment
(i) solid cone.
(filled inside)

ex 6) Compute the fur of $\vec{F}=\left\langle x_{2}^{2}, y^{2}, z^{2}\right\rangle$ across the surface S, where S is the boundary of the solid. half-cylinder $0 \leq z \leq \sqrt{1-y^{2}}, 0 \leq x \leq 2$. Use outward orientation
-Sketch and. parametrize S

Parsons don tithe baum at $\left\langle\begin{array}{ll}2, u \cos v, u \sin v\end{array}\right\rangle$

Top. $\vec{r}_{1}=\langle u, \cos v, \sin v\rangle$
Bottom.

Note: I could. use polar-inspired coordinates for Front and Back, but I chose rectangular. because it. makes the normal vector easy to find.

Compute $r_{u} \times r_{v}$ and verify orientation

For top price \vec{r}.

$$
\left.\begin{array}{l}
\vec{r}_{1}=\left\langle\begin{array}{cc}
\text { For top prece } \vec{r}_{1} & \dot{0}, \cos v, \\
\left(\vec{r}_{1}\right)_{u}=\langle\sin v
\end{array}\right\rangle \\
\left(\begin{array}{cc}
0 & 0
\end{array}\right\rangle \\
\left(\vec{r}_{1}\right)_{v}=\left\langle\begin{array}{cc}
0 & 0
\end{array}\right\rangle \\
\left(\vec{r}_{1}\right)_{u} \times\left(\vec{r}_{0}\right)_{v}=\langle\sin v, \cos v
\end{array}\right\rangle
$$

but the orientation is wrong our normal vector: $\langle 0, \cos v, \sin v\rangle$

Compute $\vec{F}(\vec{r}(u, r)):\left(r_{u} \times r_{v}\right)$.
For top piece \vec{r},

$$
\begin{aligned}
& \left\langle u^{2}, \cos ^{2} v, \sin ^{2} v\right\rangle \cdot\langle 0, \cos v, \sin v\rangle_{0} \\
& \cos ^{3} v+\sin ^{3} v
\end{aligned}
$$

Write integral and evaluate

For top . price \vec{r}_{1}.

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{2} \cos ^{3} v+\sin ^{3} v d u d v \\
& 2 \int_{0}^{\pi} \cos ^{3} v+\sin ^{3} v d u d v \\
& \frac{8}{3}
\end{aligned}
$$

For bottom piece \vec{r}_{2}
$\vec{r}_{2}=\langle u, ~$
Useful tip: This piece of the boundary is a flat rectangle, so we can find the normal vector visually. It should be the downward. unit vector $\langle 0,0,-1\rangle$

For. bottom piece \vec{r}_{2}

$$
\begin{gathered}
\left\langle u_{0}^{2}, v^{2}, 0^{2}\right\rangle \cdot\langle 0,0,-1\rangle \\
0
\end{gathered}
$$

For. bottom piece \vec{r}_{2}

$$
\iint_{0} 0 d A=0
$$

$$
F F_{m x}=\frac{8}{3}+0+2 \pi+0=\frac{8}{3}+2 \pi
$$

For front piece \vec{r}_{3} and back piece \vec{r}_{4}

$$
\left.\begin{array}{llll}
\vec{r}_{3}=\langle & 2, & u, & v \\
\vec{r}_{4} & =\langle & , \quad u,
\end{array}\right\rangle
$$

Useful tip: These pieces are flat, so their normal vectors can be found visually $\left.\begin{array}{l}\vec{n} \text { for front: }\langle 1,0,0\rangle . \\ \vec{n} \text { for back: }\langle-1,0,0\rangle .\end{array}\right\}$ \vec{r}_{3} should have - a normal that points for ward while r_{4} should point backward

For. front piece \vec{r}_{3}. $\left\langle 2^{2}, u^{2}, v^{2}\right\rangle \cdot\langle 1,0,0\rangle$

4
For back piece \vec{r}_{4}. $\left\langle 0, u^{2}, v_{0}^{2}\right\rangle:\langle-1,0,0\rangle$

0

For front piece \vec{r}_{3}. $\iint_{u, v} 4 d A=4($ area of $D)=2 \pi$.
For back piece \vec{r}_{4}

$$
\iint 0 d A_{0}=0
$$

Check-in 21
Evaluate $\iint_{S}(x+y+z) d S$ where S is a parallelogram given by $x=u+v, y=u v v, z=1+2 u+v, 0 \leq u \leq 2,0 \leq v \leq 1$. (final answer should be $11 \sqrt{14_{0}}$)

Monday November. 23

Reminders

- Study. for Quizzes 7 and 8

13.7 Stokes Theorem

Recall that Greens theorem says for $\vec{F}=\langle P, Q\rangle$, we know $\int_{\partial D} \vec{F} \cdot d \vec{r}=\iint_{D} Q_{x}-P_{y} d A$ Stokes'. theorem is a souped up version of. Green's. theorem that works for $\vec{F}=\langle P, Q, R\rangle$

Stokes: theorem: Let S be an oriented pieceenise-smooth surface that is bounded by a simple, closed, pieceenise-smooth boundary curve C with positive. orientation. Let \vec{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^{3} that contains. S. Then

$$
\int_{c} \vec{F} \cdot d \vec{r}=\iint_{s} c u r l \vec{F}: d \vec{S}
$$

In what way are. Green's and Stokes' theorems related?

Green's says these integrals are equal

Integral of \vec{F} along
the curve C.

Stokes'. Says these integrals are equal.

Integral of \vec{F} along
the curve C.

Green's theorem
is precisely
Stokes' theorem
for flat surfaces!

Integral of curl \vec{F}
over surface S
Integral of curl
over surface S

Picture of surface S

Stokes' theorem intuition

By inspection,

$$
\int_{c} \vec{F} \cdot d r=0
$$

curl $\vec{F}=\vec{O}$ everywhere

By inspection,

$$
\int_{c} \dot{\vec{F}} \cdot d r=\text { negative }
$$

curl $\vec{F}=\vec{O}$ most, everenghere but ,not zero. (with clockwise motion). along $y=0$

By. inspection,

$$
\int_{c} \stackrel{\rightharpoonup}{F} \cdot d r=\text { positive }
$$

curl $\vec{F}_{0}=$ not zero, with
counterclockwise.
motion

If we compute $\int_{c} \vec{F} \cdot d \vec{r}$ as $\int_{c_{1}} \vec{F} \cdot d \vec{r}+\int_{c_{2}} \vec{F} \cdot d \overrightarrow{r_{0}}$, we see that one piece. of the integral along C_{1} cancels with one -piece of the integral along C_{2} to form the integral over C.

The same principle applies for further subdivisions.

$$
\int_{c} \vec{F} \cdot d \vec{r}=\int_{c_{1}} \vec{F} \cdot d \vec{r}+\int_{C_{2}} \vec{F} \cdot d \vec{r}+\cdots+\int_{C_{n}} \overrightarrow{\vec{F}} \cdot d \vec{r}
$$

the curl of \vec{F} is exactly
Well, as the loops get tinier (take a limit), each $\int_{c_{k}} \vec{F} \cdot d \vec{F}$. produces the component of the curt of \vec{F} orthogonal to the surface. In other. words, $\int_{C_{k}} \vec{F} \cdot d \vec{r} \approx \vec{F} \cdot \vec{n}$ inside tiny loop C_{k}. Then adding up every tiny loop across all of S, we get.

$$
\begin{aligned}
\int_{c} \vec{F} \cdot d \vec{r} & =\int_{C_{1}} \vec{F} \cdot d \vec{r}+\int_{C_{2}} \vec{F} \cdot d \vec{r}+\cdots+\int_{C_{n}} \vec{F} \cdot d \vec{r} \\
& =\operatorname{curl} \vec{F} \cdot \vec{n}+\operatorname{curl} \vec{F} \cdot \vec{n}+\cdots+\operatorname{cur}_{\text {in }} C_{2} \vec{F} \cdot \vec{n} \\
& =\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} d S
\end{aligned}
$$

smbc-comics.com/comic/2014-02-24
ex 1) (part of HW 14)

1. A hemisphere H and a portion P of a paraboloid are shown. Suppose \mathbf{F} is a vector field on \mathbb{R}^{3} whose components have continuous partial derivatives. Explain why

$$
\iint_{H} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{P} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

ex 2) Use Stokes' theorem to evaluate $\int_{c} \vec{F} \cdot d \vec{r}$. Let. C. be oriented counterclockwise when viewed from above. $\vec{F}(x, y, z)=\left\langle y z, 2 x z, e^{x y}\right\rangle$ and. C. is the circle $x^{2}+y^{2}=16, z=5$

Sketaitiof C

Parameterize S
Find \vec{n} :

By inspecti, , \vec{n}. is the unit. vector $\langle 0,0,1\rangle$

Compute curl $\dot{\vec{F}}$:

$$
\operatorname{Curl}\left|\vec{F}=\left|\begin{array}{lll}
i & j & k \\
2 / 2 & { }^{2} \\
2 / 2 y & z / \partial z \\
y z & 2 x z & e^{x y}
\end{array}\right|=\left\langle x e^{x y}-2 x,-\left(y e^{x y}-y\right) ; 2 z-z\right\rangle\right.
$$

Write integral: $\iint_{u, r} \vec{F}(\vec{F}(u, v)) \cdot\langle 0,0,1\rangle, d A$
$\iint_{u, v} 5^{\circ} d A$
$5 \iint_{u v} d A$
5 (area of domain of u,)
$5 \cdot \pi 4^{2}$
80π
ex 3) Use Stokes' theorem to evaluate $\iint_{0} \operatorname{curl} \vec{F}: d \vec{S}$ for

$$
\vec{F}=\left\langle x^{2} y^{3} z, \sin (x y z), x y z\right\rangle
$$

$S=$ the part of $y^{2}=x^{2}+z^{2}$ between $y=0$ and $y=3$ oriented in the direction of the positive y-axis.

Boundary of S is the rim of the cone, ie the circle with this orientation below

Stokes'

$$
\iint_{S} \text { curl } \dot{F}_{0} \cdot d \vec{S}=\int_{\partial S}^{0} \vec{F} \cdot d \vec{r}
$$

Parametrize C :

$$
\vec{r}(t)_{0}=\left\langle 3 \sin t, 3_{0}, 3 \cos t\right\rangle, 0 \leq t \leq 2 \pi
$$

$$
r^{\prime}(t)=\langle 3 \cos t, 0,-3 \sin t\rangle
$$

Compute. $\vec{r}_{0}^{\prime}(t)$:

Compute $\vec{F}_{0}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)$:

$$
\left\langle\sin ^{2} t \cdot 3^{6} \cdot \cos t, \sin (27 \sin t \cos t), 27 \sin t \cos t\right\rangle \cdot\langle 3 \cos t, 0,-3 \sin t\rangle
$$

$$
3^{7} \sin ^{2} t \cos ^{2} t-81 \sin ^{2} t \cos t
$$

Write integral:

$$
\int_{0}^{2 \pi} 3^{7} \sin ^{2} t \cos ^{2} t-81 \sin ^{2} t \cos t d t
$$

$$
\frac{2187}{4} \pi
$$

Name: \qquad

1. Determine whether each statement is TRUE or FALSE
(a) If \vec{F} is a vector field, then div \vec{F} is a vector field.
(b) If \vec{F} is a vector field and curl $\vec{F}=\overrightarrow{0}$, then \vec{F} is conservative.
(c) If S is a sphere and \vec{F} is a constant vector field, then $\iint_{S} \vec{F} \cdot d \vec{S}=0$.
(d) The line integral $\int_{C} \vec{F} \cdot d \vec{r}$ is a scalar.
(e) If C_{1} and C_{2} are oriented curves and the length of C_{1} is greater than the length of C_{2}, then $\int_{C_{1}} \vec{F} \cdot d \vec{r}>\int_{C_{2}} \vec{F} \cdot d \vec{r}$.
(f) If $\vec{F}=\nabla f$, then \vec{F} is path-independent.
(g) The value of a flux integral is a scalar.
(h) The flux of the vector field $\vec{F}=\langle 1,0,0\rangle$ through the plane $x=0,0 \leq y \leq 1,0 \leq z \leq 1$, oriented in the positive x-direction is zero.
2. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$.
(a) $\vec{F}(x, y, z)=\left\langle y^{2} \cos z, 2 x y \cos z,-x y^{2}\right\rangle$ $C: \vec{r}(t)=\left\langle t^{2}, \sin t, t\right\rangle, 0 \leq t \leq \pi$

Kinda ugly, maybe typo?
(b) $\vec{F}(x, y)=\left\langle y+e^{\sqrt{x}}, 2 x+\cos y^{2}\right\rangle$
C is the boundary of the region enclosed by parabolas $y=x^{2}$ and $x=y^{2}$

(c) $\vec{F}(x, y, z)=\left\langle e^{y}, x e^{y},(z+1) e^{z}\right\rangle$
$C: \vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle, 0 \leq t \leq 1$

$$
\begin{aligned}
& \left.\begin{array}{ll}
\text { Use Fundamental The } \\
\text { of Le Integrals }!
\end{array} \begin{array}{l}
\int_{x e^{\prime} d y} d x=x e^{y}+g(x, z)
\end{array}\right\} f(x, z)=x e^{y}+z e^{z} \quad \int_{c} \quad=f(1,1,1)-f(0,0,0) \\
& \text { (d) } \vec{F}(x, y)=\left\langle e^{x}+x^{2} y, e^{y}-x y^{2}\right\rangle \\
& =1 \cdot e^{\prime}+1 \cdot e^{\prime}-0 \\
& =2 e
\end{aligned}
$$

C is the circle $x^{2}+y^{2}=25$ oriented clockwise.
Is \vec{F} conservative?
$\int_{c} F \cdot d r=-\iint_{D} Q_{x}-P_{y} d A$
$Q_{x}-P_{y} \neq 0$, so no
$=-\iint_{D}-y^{2}-x^{2} d A$
Use brute force or
$=\int_{0}^{5} \int_{0}^{2 \pi} r^{2} \cdot r d \theta d r$
3. Is $\vec{F}(x, y, z)=\left\langle e^{z}, 1, x e^{z}\right\rangle$ a conservative vector field? If so, find f such that $\vec{F}=\nabla f$.
4. Evaluate $\iint_{S} x^{2}+y^{2} d S$ where S is the surface with vector equation $\vec{r}(u, v)=\left\langle 2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right\rangle, u^{2}+v^{2} \leq 1$.

$$
\iint_{S} f d S=\iint_{u, v} f(\vec{r}(u, v))\left|\vec{r}_{u} \times \vec{r}_{r}\right| d A \begin{array}{ll}
\frac{\text { Compute }}{} \vec{r}_{u} \times r_{v} \\
\vec{r}_{u}=\langle 2 v, 2 u, 2 u\rangle \\
\vec{r}_{v}=\langle 2 u,-2 v, 2 v\rangle \\
\vec{r}_{u} \times \vec{r}_{v}=\left\langle 4 u r+4 u r-\left(4 v^{2}-4 u^{2}\right),-4 v^{2}-4 u^{2}\right\rangle \\
\left|\vec{r}_{u} \times \vec{r}_{v}\right|=4 \sqrt{2}\left(v^{2}+u^{2}\right) &
\end{array} \quad \begin{aligned}
& \text { Write integral } \\
&
\end{aligned}
$$

5. Evaluate $\iint_{S} z+x^{2} y d S$ where S is the part of the cylinder $x^{2}+y^{2}=1$ that lies between the planes $z=0$ and $z=3$ in the first octant.
6. Evaluate the flux $\iint_{S} \vec{F} \cdot d \vec{S}$ where $\vec{F}(x, y, z)=\left\langle x z e^{y},-x z e^{y}, z\right\rangle$ where S is the part of the plane $x+y+z=1$ in the first octant with downward orientation.
7. Evaluate the flux $\iint_{S} \vec{F} \cdot d \vec{S}$ where $\vec{F}(x, y, z)=\langle 0, y,-z\rangle$ where S is the part of the paraboloid $y=x^{2}+z^{2}$, $0 \leq y \leq 1$, and the disk $x^{2}+z^{2} \leq 1, y=1$.

${ }^{x}$ 8. The figure below shows the level curves of $f(x, y)$.

(a) Sketch ∇f at P.
(b) Is the vector ∇f at P longer than, shorter than, or the same length as ∇f at Q ?
(c) If C is a curve from P to Q, evaluate $\int_{C} \nabla f \cdot d \vec{r}$.

$$
\begin{aligned}
& \text { By Fundamental Thm of Line integrals, } \\
& \int_{c} \nabla f \cdot d \vec{r}=f(\text { end } p t)-f(\text { start pt })=22.7-23=-.3
\end{aligned}
$$

Note: For more great review problems, see exercises at the end of Chapter 13, questions 11-28

Answers
(1) $F F T T F T T F$
(2) (a) 0 (b) $1 / 3$ (c) $2 e$ (d) $625 \pi / 2$
(3) $f=x e^{z}+y+C$
(4) $\sqrt{2} \pi$
(5) 12
(6) $-1 / 6$
(7) 0
(8) (a) arrow from P pointing up and slightly left, perpendicular to the level curve (b) vector at P is longer (c) -0.3

Compute directional derivative of $f(x, y)=x^{2} y+e^{x}$ at $(0,0)$ in the direction $\langle 4,-1\rangle$

$$
\nabla f=\left\langle 2 x y+e^{x}, x^{2}\right\rangle \quad|v|=\sqrt{4^{2}+1^{2}}=\sqrt{17}
$$

$$
\nabla f(0,0)=\langle 1,0\rangle
$$

$$
D_{\vec{u}} f(0,0)=\langle 1,0\rangle \cdot\langle 4,-1\rangle\left(\frac{1}{\sqrt{17}}\right)=4 / \sqrt{17}
$$

Monday November 30
Reminders.

- Quiz 7. 8 corrections due tonight before midnight
- Fill out FCQs
- Fill out feedback. form on Google Forms
- WebAssign 13.7
- HW. 14 . Section 13.7
13.7 Stokes' Theorem (cont)

Recap
Stokes'. theorem: For oriented surface S with positively oriented boundary C,

$$
\int_{c: \partial s} \vec{F} \cdot d \vec{r}=\iint_{S} \nabla \times \dot{\vec{F}} \cdot d \dot{\vec{S}}
$$

Stokes' says these integrals are equal

Integral of \vec{F} along the curve C

Integral of curl \vec{F} over surface S
ex 4) Let $\vec{F}=\nabla f$. for $f(x, y, z)=y^{2} \sin (x z)$. Evaluate $\iint_{S} \operatorname{cur} \mid \vec{F} \cdot d \vec{S}$. when S is the part of $z=x y$ on $0 \leq x \leq 1,0 \leq y \leq 1$

$$
\vec{F}=\nabla f^{\prime} \text {, which means } \vec{F} \text { is conservative. }
$$

So $\operatorname{curl} \vec{F}=\overrightarrow{0}$ and $\iint_{S} \operatorname{curl} \vec{F} \cdot d \overrightarrow{\vec{s}}=\iint_{S} \overrightarrow{0} \cdot d \vec{s}=$

* Popular exam question
ex) Evaluate \iint_{S} curl $\vec{F} \cdot d \vec{S}$ for $\vec{F}=\left\langle e^{x y} \cos z, x^{2} z, x y\right\rangle$ and S is $x=\sqrt{1-y^{2}-z^{2}}$ oriented in the direction of positive x.

Options for computation.
(a). Brute force

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}=\iint_{u, v} \operatorname{curl} \vec{F}(\vec{r}(u, r)) \cdot\left(r_{u} \times r_{v}\right) d A
$$

(b) Stokes. theorem via line integral. $\quad \iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}=\int_{a s} \vec{F} \cdot d \vec{r}$
(c). Stokes': theorem via a_{0} different surface $\iint_{s} \operatorname{curl} \vec{F} \cdot d \vec{S}=\iint_{S_{2}} \operatorname{curl} \vec{F}: d \vec{S}$.

Is \vec{F} Conservative? N_{0} (2)
Sketch S and $2 S^{\prime}=C$

Choose option (c) with. S_{2} as the flat disk given by $\vec{F}(u, v)=\langle 0, y, z\rangle \quad y^{2}+z^{2} \leq 1$

Find $\overrightarrow{r_{1} \times \vec{r}}$
By. inspection, let our unit normal be $\langle 1,0,0\rangle$
Since \vec{r} uses a rectangular parametrization, $\left|\vec{r}_{u} x_{0} \vec{r}_{r}\right|=1$.

$$
\begin{aligned}
& \text { So. } \vec{n}_{0}=\frac{\vec{r}_{u} \times \vec{r}_{r}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|} \\
& \langle 1,0,0\rangle=\frac{\vec{r}_{u} \times \vec{r}_{r}}{1} \\
& \cdot \vec{r}_{u} \times \vec{r}_{r}=\langle 1,0,0\rangle
\end{aligned}
$$

Compute curl \vec{F}

Compute curl $\vec{F}(\vec{r}(u, r)) \cdot \vec{r}_{n} \times \vec{r}_{r}$. curl $\vec{F}_{0}=\left|\begin{array}{ccc}j & j & k \\ \frac{\partial}{2 x} & \frac{\partial y}{2 y} & \alpha z z \\ e^{x y} \cos z & x^{2} z & x y\end{array}\right|$

$$
=\left\langle x-x^{2},-\left(y+e^{x / y} \sin z\right), 2 x z-x e^{i y} \cos z\right\rangle
$$

irrelevant!.

Write integral

$$
\iint_{y^{2}+2=i} 0 d A_{0}=0
$$

List of ways to use Stokes' theorem $\oint_{\partial s} \vec{F} \cdot d \vec{r}=\iint_{s}$ curl $\vec{F} \cdot d \vec{S}$
1.). Find $\oint_{c} \vec{F}_{0} \cdot d \vec{r}$ by inventing a surface S with boundary C. and proper orientation
Compute \iint_{S} curl $\dot{F} \cdot d \vec{s}$ instead
2). Find \iint_{S} curl $\dot{\vec{F}} \cdot d \dot{s}$ by finding its boundary C with correct orientation.

Compute $\oint_{c} \vec{F} \cdot d \vec{r}$ instead.
3). Find \iint_{S}^{0} curl $\vec{F}: d \vec{S}$ by inventing a rew surface \dot{S}_{2} with same boundary and orientation as S. Compute $\iint_{S_{2}}$ curl $\vec{F} \cdot d \vec{s}$ instead.
ex 6) Evaluate \iint_{S} curl $\vec{F}: d \vec{S}$ where $\vec{F}=\left\langle z^{2},-3 x y, x^{3} y^{3}\right\rangle$ and S is the part of $z=5-x^{2}-y^{2}$. satisfying $z \geq 1$, with positive orientation in the positive z-direction

Options for computation
1.) Bute force
2.) Swap to line integral. along boundary. This is a valid coo inc. See
next paige at see the result next page to see the result
if. you picked this method]
3). Swap to a different - Surface [TIl do this one below]

Sketch S

New surface.

Parametrize. $S_{2} \quad \vec{r}(u, v)=\langle u, v, 1\rangle, u_{0}^{2}+v_{0}^{2} \leq 4$
Calculate. $\vec{r}_{u} \times \vec{r}_{r}$. By inspection, we see $\vec{r}_{u} \times \vec{r}_{v}=\langle 0,0,!\rangle$

Write integral

$$
\begin{aligned}
& \iint_{u^{2}+r^{2} \leq 4}\langle ? ?, ? ?,-3 r\rangle-\langle 0 ; 0,1\rangle d A \\
& \iint_{0}^{0}-3 v d A \\
& \int_{0}^{2 \pi} \int_{0}^{2}-3 r \sin \theta \cdot r d r d \theta=0
\end{aligned}
$$

```
Here are some excellent worked examples from Paul's Online Notes.
Original document found at
https://tutorial.math.lamar.edu/pdf\%5CCalcIII\%5CCalcIII_StokesThm.pdf
```

Let's take a look at a couple of examples.
Example 1 Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}$ where $\vec{F}=z^{2} \vec{i}-3 x y \vec{j}+x^{3} y^{3} \vec{k}$ and S
is the part of $z=5-x^{2}-y^{2}$ above the plane $z=1$. Assume that S is oriented upwards.

Solution

Let's start this off with a sketch of the surface.

In this case the boundary curve C will be where the surface intersects the plane $z=1$ and so will be the curve

$$
\begin{aligned}
1 & =5-x^{2}-y^{2} \\
x^{2}+y^{2} & =4 \quad \text { at } z=1
\end{aligned}
$$

So, the boundary curve will be the circle of radius 2 that is in the plane $Z=1$. The parametrization of this curve is,

$$
\vec{r}(t)=2 \cos t \vec{i}+2 \sin t \vec{j}+\vec{k}, \quad 0 \leq t \leq 2 \pi
$$

The first two components give the circle and the third component makes sure that it is in the plane $z=1$.

Using Stokes' Theorem we can write the surface integral as the following line integral.

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}=\int_{C} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t
$$

So, it looks like we need a couple of quantities before we do this integral. Let's first get the vector field evaluated on the curve. Remember that this is simply plugging the components of the parameterization into the vector field.

$$
\begin{aligned}
\vec{F}(\vec{r}(t)) & =(1)^{2} \vec{i}-3(2 \cos t)(2 \sin t) \vec{j}+(2 \cos t)^{3}(2 \sin t)^{3} \vec{k} \\
& =\vec{i}-12 \cos t \sin t \vec{j}+64 \cos ^{3} t \sin ^{3} t \vec{k}
\end{aligned}
$$

Next, we need the derivative of the parameterization and the dot product of this and the vector field.

$$
\begin{gathered}
\vec{r}^{\prime}(t)=-2 \sin t \vec{i}+2 \cos t \vec{j} \\
\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t)=-2 \sin t-24 \sin t \cos ^{2} t
\end{gathered}
$$

We can now do the integral.

$$
\begin{aligned}
\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S} & =\int_{0}^{2 \pi}-2 \sin t-24 \sin t \cos ^{2} t d t \\
& =\left.\left(2 \cos t+8 \cos ^{3} t\right)\right|_{0} ^{2 \pi} \\
& =0
\end{aligned}
$$

Example 2 Use Stokes' Theorem to evaluate $\int_{C} \vec{F} \bullet d \vec{r}$ where $\vec{F}=z^{2} \vec{i}+y^{2} \vec{j}+x \vec{k}$ and C is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$ with counter-clockwise rotation.

Solution

We are going to need the curl of the vector field eventually so let's get that out of the way first.

$$
\operatorname{curl} \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
z^{2} & y^{2} & x
\end{array}\right|=2 z \vec{j}-\vec{j}=(2 z-1) \vec{j}
$$

Now, all we have is the boundary curve for the surface that we'll need to use in the surface integral. However, as noted above all we need is any surface that has this as its boundary curve. So, let's use the following plane with upwards orientation for the surface.

Since the plane is oriented upwards this induces the positive direction on C as shown. The equation of this plane is,

$$
x+y+z=1 \quad \Rightarrow \quad z=g(x, y)=1-x-y
$$

Now, let's use Stokes' Theorem and get the surface integral set up.

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S} \\
& =\iint_{S}(2 z-1) \vec{j} \cdot d \vec{S} \\
& =\iint_{D}(2 z-1) \vec{j} \cdot \frac{\nabla f}{\|\nabla f\|}\|\nabla f\| d A
\end{aligned}
$$

Okay, we now need to find a couple of quantities. First let's get the gradient. Recall that this comes from the function of the surface.

$$
\begin{gathered}
f(x, y, z)=z-g(x, y)=z-1+x+y \\
\nabla f=\vec{i}+\vec{j}+\vec{k}
\end{gathered}
$$

Note as well that this also points upwards and so we have the correct direction.

Now, D is the region in the $x y$-plane shown below,

We get the equation of the line by plugging in $Z=0$ into the equation of the plane. So based on this the ranges that define D are,

$$
0 \leq x \leq 1 \quad 0 \leq y \leq-x+1
$$

The integral is then,

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\iint_{D}(2 z-1) \vec{j} \cdot(\vec{i}+\vec{j}+\vec{k}) d A \\
& =\int_{0}^{1} \int_{0}^{-x+1} 2(1-x-y)-1 d y d x
\end{aligned}
$$

Don't forget to plug in for z since we are doing the surface integral on the plane. Finishing this out gives,

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r} & =\int_{0}^{1} \int_{0}^{-x+1} 1-2 x-2 y d y d x \\
& =\left.\int_{0}^{1}\left(y-2 x y-y^{2}\right)\right|_{0} ^{-x+1} d x \\
& =\int_{0}^{1} x^{2}-x d x \\
& =\left.\left(\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right)\right|_{0} ^{1} \\
& =-\frac{1}{6}
\end{aligned}
$$

In both of these examples we were able to take an integral that would have been somewhat unpleasant to deal with and by the use of Stokes' Theorem we were able to convert it into an integral that wasn't too bad.

Fill out FCQs and feedback forms, please

Good old Stokes Theorem

Tuesday
December 1
Reminders.

- Nothing. much! Calculate grades? Make a study plan?
13.8 Divergence theorem

Refresher on boundaries + orientation
What is the boundary of each shape?
(a) line segment.

(b) space curve that not closed.

(c) circle $x^{2}+y^{2}=1, z=3$.
 no boundary.
(d). disk $x^{2}+y^{2} \leq 1, z=3$
(e) sphere $x^{2}+y^{2}+z^{2}=1$
 no boundary.
(f) Solid ball $x^{2}+y^{2}+z^{2} \leq 1$

sphere
(g). solid cylinder $x^{2}+y^{2} \leq 1,0 \leq z \leq 3$.

two disks and a tube
(h) the 4D ball $x^{2}+y^{2}+z^{2}+w^{2} \leq 1$
 - circle on the rim if disk is oriented downward, boundary is oriented clockwise. when viewed from above.

Divergence Theorem: Let E be a simple solid region and let the surface S be the boundary of. E with positive outward orientation. Let, \vec{F} be a vector field. with continuous. partial. derivatives on an open region containing E. Then

The divergence of \vec{F} is $\operatorname{div} F=3$

The outward flux of \vec{F} across the surface given by the boundary of the cube is positive
The integral of div \vec{F} over the solid cube is $\iiint_{\text {cube }} 3 d V$ The value here is positive

The outward flux of \vec{F} across the surface given by the boundary of the joined double-cube is equal to.
(flux out of orange cube) + (lux. ont of green cube). The total flux is , positive. Notice that the joined sides cancel?

The integral of div \vec{F} over the joined. double=cube is $\iiint_{\substack{\text { dame } \\ \text { duce }}} 3 \mathrm{dV}$. The value here is positive.

The outward flux of \vec{F} across the surface given by the boundary of the joined mega-cube is equal to the sum of the flues out of each small cube. The. total flux is positive.
Notice that the joined sides cancel?
The integral of div \vec{F} over the joined mega-cube
is $\iiint_{\substack{\text { mage } \\ \text { cube }}} 3 d V$. The value here is positive.
ex 1) Calculate the flux of \vec{F} across S

$$
\vec{F}=\left\langle x^{2} y, z, x y^{2} z, x y z^{2}\right\rangle
$$

S.is the surface of the box given by $0 \leq x \leq 1,0 \leqslant y \leq 2,0 \leq z \leq 3$.

Sketch S

Options for computing

1) Binate force via $\iint_{S} \vec{F} \cdot d \dot{\vec{S}}=\iint_{u, v} \vec{F}(\vec{F}(u, n)) \cdot \dot{F}_{u} \times \dot{r}_{v} d \dot{A}$

2.) If . \vec{F} happens to be curt of sone other VF. \vec{G}, then $\iint_{S} \vec{F} \cdot d \vec{S}=\iint_{s} \operatorname{arl} \vec{G} \cdot d \vec{S}=\int_{2 s} \vec{G} \cdot d \vec{r} .($ by Stokes' the $)$
No clue if $\vec{F}=$ curl \vec{G} CCan't do this method
3). Divergence the. says. $\iint_{S} \vec{F}: d \overrightarrow{s_{0}}=\iiint_{E} \operatorname{div} \vec{F} d v$ E is a really nice shape!
Do, this one.

$$
\begin{aligned}
\operatorname{div} \vec{F} & =\frac{\partial}{\partial x} P+\frac{\partial}{\partial y} Q+\frac{\partial}{\partial z} R \\
& =2 x y z+2 x y z+2 x y z \\
& =6 x y z \\
F l u x & =\iint_{S} \vec{F} d d \vec{S} \\
& =\iiint_{E} 6 x y z d V \\
& =\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} 6 x y z d z d y d x \\
& =27
\end{aligned}
$$

* Common exam
ex 2) Calculate the flux of \vec{F} across S question

$$
\vec{F}=\left\langle x^{3}+y^{3}, y^{3}+z^{3}, z^{3}+x^{3}\right\rangle
$$

S. is the sphere centered at the origin with radius 3 .

Sketch S.

Options

1) Bite force: $\iint_{S^{\circ}} \vec{F} \cdot d \vec{s}=\iint_{u i v} F(\vec{r}(u, \vec{v})) \cdot \vec{r}_{u} \times \vec{r}_{v} d A$ Seems. clunky
2) IS $\vec{F}=$ curl \vec{G}. So that Stokes? theorem apples? No. cue!
3). Diverignce the seems promising

$$
\begin{aligned}
\text { div } \vec{F} & =\frac{\partial}{\partial P} P+\frac{3}{\partial x} Q+\frac{\partial}{\partial z} R \\
& =3 x^{2}+3 y^{2}+3 z^{2} \\
\text { Flux } & =\iint_{3} \vec{F}: d \vec{S} \\
& =3 \iiint_{E} x^{2}+y_{0}^{2}+z^{2} d V \\
& =3 \int_{0}^{\pi \pi} \int_{0}^{\pi} \int_{0}^{3} \rho^{2} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =3 \cdot 2 \pi \frac{i}{5}\left(3^{5}\right) \cdot 2 \\
& =\frac{2916 \pi}{5}
\end{aligned}
$$

ex 3) Calculate the fun x of \vec{F} across S

$$
\vec{F}=\left\langle x^{4},-x^{3} z^{2}, 4 x y^{2} z\right\rangle
$$

S. is the surface of the solid bounded by $x^{2}+y^{2}=1, \quad z=x+2, z=0$.

Sketch. S

$$
\begin{array}{rl}
\operatorname{div} & \vec{F} \\
F \ln x & =\iint_{S} \vec{F} \cdot d \dot{x^{3}}+0+4 x y^{2} \\
& =\iiint_{E} \operatorname{div} \vec{F} d V \\
& =4 \iiint_{E} x\left(x^{2}+y^{2}\right) d V \\
& =4 \int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{r \cos \theta+2} r \cos \theta \\
r^{2} & r d z d r d \theta \\
& =\frac{2 \pi}{3}
\end{array}
$$

Wednesday December 2
Reminders

- Compile HW. 14 . for Andre
- WebAssign 13.8
13.8 Divergence theorem (cont)

Recap
Divergence theorem: $\iint_{S=2 E} \vec{F} \cdot d \vec{S}=\iiint_{E} \operatorname{div} \vec{F} d V$.
ex) Find the flux of $\vec{F}=\left\langle\cos (z), \sin (z), x^{2}+y^{2}\right\rangle$ across the boundary of the cylinder. $x^{2}+y^{2} \leq 4,0 \leq z \leq 3$.
Sketch S

$$
\left.\begin{array}{rl}
\dot{d i v} \vec{F} & =\frac{\partial}{\partial x} P+\frac{\partial}{\partial x} Q+\frac{\partial}{\partial z} R \\
& =0+0+0 \\
& =0 \\
\dot{F l u x} & =\iint_{0}^{0} \vec{F} \cdot d \vec{r} \\
& =\iiint_{E} 0 \\
0
\end{array}\right)
$$

ex 4) Find the fin of $\vec{F}=\left\langle\cos (z), \sin (z), x^{2}+y^{2}\right\rangle$ across the cylindrical cup given by the tube $x^{2}+y^{2}=4,0 \leq z \leq 3$, and the disk $x^{2}+y^{2} \leq 4, \ldots=0$.

Sketch surface.

The divergence theorem uses a .solid E and its entire boundary, but .our. surface is only a piece of the boundary!

Solution: split up the boundary.
If . E. is. the solid cylinder. $x^{2}+y^{2} \leq 4,0 \leq z \leq 3$ then its boundary ∂E is made of a tube and. two disks.
$\partial \dot{E}=$

and

$$
S_{i}=\text { top disk }
$$

[This is the surface we care about].
Then the divergence theorem says

$$
\begin{aligned}
& \iiint_{E} \operatorname{div} \vec{F}=\iint_{\partial E} \vec{F} \cdot d \vec{S} \\
& \iiint_{E} \operatorname{div} \vec{F}=\iint_{S_{1}} \vec{F} \cdot d \vec{S} \cdot+\iint_{s_{2}} \vec{F}: d \vec{S} \\
& {\underset{\substack{\text { (from prerions } \\
\text { example) }}}{0}=\underbrace{\iint_{1} \stackrel{\rightharpoonup}{F}_{0} \cdot d \vec{S}_{1}}_{\begin{array}{c}
\text { Let's actually } \\
\text { compute this. }
\end{array}}+\iint_{S_{2}}^{0} \vec{F} \cdot d \stackrel{\rightharpoonup}{S}_{2}}_{0}^{0} \\
& { }^{-\iint_{S_{1}} \vec{F}_{0} \cdot d \vec{S}_{1}} \\
& \text { compute this. } \\
& \cdot \iint_{S_{1}} \vec{F} \cdot d \vec{S}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& S_{1} \vdots \vec{r}(u, v)^{\circ}=\langle u, v, 3\rangle u^{2^{2}}+v^{2} \leq 2 \\
& \vec{r}_{u} \times \vec{r}_{v}=\langle 0,0, i\rangle \\
& \vec{F}\left(\vec{r}_{0}\left(u, v_{0}\right)\right)=\left\langle\cos 3, \sin 3, u^{2}+v^{2}\right\rangle \\
& \vec{F}\left(\vec{r}_{0}(u, v)\right) \cdot \vec{r}_{u} \times \vec{r}_{v}=u^{2}+v^{2} \text {. } \\
& \iint_{S_{1}} \vec{F} \cdot d S_{1}=\iint_{u_{1} v} u_{0}^{2}+v^{2} \cdot d A \text {. } \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \dot{r}^{2} \cdot \dot{r} d r d \theta \\
& S_{1} \vdots \vec{r}(u, v)^{\circ}=\langle u, v, 3\rangle u^{2}+v^{2} \leq 2 \\
& =8 . \pi \text {. }
\end{aligned}
$$

we want this.

* Popular exam
ex 5) Let $\vec{F}=\left\langle z \tan ^{-1}\left(y^{2}\right), z^{3} \ln \left(x^{2}+1\right), z\right\rangle$. Find the flux of \vec{F} across. the paraboloid, $x^{2}+y^{2}+z=2$ that lies above $z=1$, and is oriented upward.

Sketch

$E=$ solid

$2 E=$

and.
$S_{4}=$ bell.
(lII)
$S_{2}=$ disk

$$
\begin{aligned}
& S_{2}: \vec{r}=\left\langle u, v_{0}, 1\right\rangle \\
& \vec{r}_{u} \times \vec{r}_{v}=\langle 0,0,-1\rangle \\
& \vec{F}\left(\vec{r}(a, v)=\left\langle u^{2}+v^{-1}\left(v_{0}^{2}\right), \ln \left(u^{2}+1\right), 1\right\rangle\right. \\
& \vec{F}(F(u, v)) \cdot \vec{r}_{u} \times \vec{r}_{v}=-1 \\
& \iint_{u, r}-\frac{1}{0} d A \\
& \int_{0}^{2 \pi} \int_{0}^{i}-r d r d \theta
\end{aligned}
$$

$$
\pi / 2
$$

$-\pi$.

$$
\begin{aligned}
& \iint_{s_{1}} \vec{F} \cdot d \vec{s}-\pi=\pi / 2 \\
& \iint_{S_{1}} \vec{F} \cdot d \vec{s}=\frac{3 \pi}{2}
\end{aligned}
$$

The Seal.
 Stokes' theorem

Here's what the Wikipedia article on Stokes' theorem looks like:

\equiv WIKIPEDIA \quad Q Search Wikipedia

Stokes' theorem

唁 Language

\downarrow Download PDF $\underset{\sim}{\sim}$ Watch
Edit
This article is about the generalized theorem. For the classical theorem, see Kelvin-Stokes theorem. For the equation governing viscous drag in fluids, see Stokes' law.

In vector calculus and differential geometry, Stokes' theorem (sometimes spelled Stokes's theorem), also called the generalized Stokes
theorem or the Stokes-Cartan theorem, ${ }^{[1]}$ is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. Stokes' theorem says that the integral of a differential form ω over the boundary of some orientable manifold Ω is equal to the integral of its exterior derivative $d \omega$ over the whole of Ω, ie.,
$\int_{\partial \Omega} \omega=\int_{\Omega} d \omega$

Stokes' theorem was formulated in its modern form by Élie Cartan in 1945, ${ }^{[2]}$ following earlier work on the generalization of the theorems of vector calculus by Vito Volterra, Édouard Goursat, and Henri Poincaré. ${ }^{[3][4]}$

Let's compare it to the Stokes' theorem we know
Our version of Stokes' theorem:

Wikipedia version of Stokes theorem:

$$
\begin{aligned}
& \int_{\partial S} \vec{F} \cdot d \vec{r}=\iint_{S} \text { curl } \overrightarrow{\vec{F}} \cdot d \vec{S} \quad \begin{array}{l}
\text { the integrand and } \\
\text { some kind of } \\
\text { derivative }
\end{array} \\
& \int_{\partial \text { shape and its boundary }}^{\omega}=\int_{\text {A shape and its boundary }} d \omega \quad \begin{array}{l}
\text { the integrand oud } \\
\text { some.knno of } \\
\text { derivative }
\end{array}
\end{aligned}
$$

But wait... there's more!
Green's theorem:

$$
\int_{D D} \vec{F} \cdot d \vec{r}=\iint_{D} Q_{x}-P_{y} d A
$$

Divergence theorem:

$$
\iint_{\partial E} \vec{F} \cdot d \vec{S}=\iiint_{E} \operatorname{div} \vec{F} d V
$$

Fundamental theorem of line integrals:

Fundamental theorem of calculus:

$$
\left.F(x)\right|_{a=} ^{b}=F(b)-F(a)=\int_{a}^{b} F^{\prime}(x) d x
$$

The same pattern holds for all of these theorems I!!
In the Wikipedia version of Stokes theorem, the "derivative" is some higher notion called. the exterior derivative that becomes div, curl, grad, or $\frac{d}{d x}$ in low dimensions.

$$
\int_{\partial \Omega} \dot{W}=\int_{\Omega} \underbrace{}_{\text {exterior derivative }} d \dot{w}
$$

So all of these theorems are just special cases of the one true. Stokes' theorem!

Fundamental meme of calculus

Friday December 3
Reminders

- All. Week 14 WebAssign due Sunday before midnight.
- Optional Quiz 9 review on WebAssign.

Go to student.desmos.com and use code QDC AC8 Do. the "FTC Matching" activity.

Part I - Summary of higher-dimensional versions of the Fundamental Theorem of Calculus

 Fill in the blanks (assuming appropriate hypotheses are met for the integrands).1. The theorem regarding the equation $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V$ can be stated as follows:

Given a surface integral of a vector field \mathbf{F} over a surface S, if the surface S is \qquad , the surface integral is equal to a \qquad of \qquad over the region bounded by the surface. \qquad Theorem)
2. Given a line integral of a vector field \mathbf{F} over a curve C, if \mathbf{F} is \qquad , then the value of the line integral is the difference between f evaluated at the start point and end point of the curve, where \qquad $f=$ \qquad .
\qquad
3. Given a line integral of a vector field \mathbf{F} along a curve C, if the curve C is \qquad , the line integral is equal to a \qquad of \qquad over any orientable surface that has the curve C as its boundary.
\qquad)
4. Given a line integral of a vector field $\mathbf{F}=\langle P, Q\rangle$ over a planar closed curve C (oriented counter-clockwise), the line integral is equal to a \qquad of \qquad over the planar region bounded by C. (\qquad
5. To evaluate $\iint_{E} \int_{E} \nabla \cdot \mathbf{F} d V$, you can calculate $\iint_{S} \ldots$, where S is \qquad .
\qquad
6. To evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$ (over an orientable surface S), you can calculate $\int_{C} \quad \ldots$, where C is
\qquad . \qquad

Part II - Practice problems

1. The figure below shows a surface S, which is a sphere of radius 5 centered at the origin, with the top cut off, so the upper edge of the surface lies at $z=4$. Use one of the theorems from Chapter 13 to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\langle y,-x, z\rangle . \quad \mathbf{S}$ is oriented outward.

2. Consider the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the closed yurt-shaped surface shown below, and $\mathbf{F}=\langle 3 x, 2 y, z\rangle$. Notice that the surface comprises three separate pieces: the circular base, the cylinder walls, and the conical top. The cylinder has radius 3 and height 2 , and the cone has radius 3 and height 3 .
(a) Discuss with your group the list of steps required to evaluate this surface integral directly.
(b) Use one of the theorems from Chapter 13 to set up a different type of integral with the same value as the given surface integral.
(c) Interpret the new integral geometrically to find its value without evaluating it.

S is oriented outward.

3. Consider the two integrals $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$ and $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\langle y,-x, 0\rangle$, and where C_{1} is shown below (solid), and C_{2} is shown below (dashed). A top-view of the vector field \mathbf{F} is also shown. Do the two line integrals give the same value, or not? Explain.

Part I - Summary of higher-dimensional versions of the Fundamental Theorem of Calculus

 Fill in the blanks (assuming appropriate hypotheses are met for the integrands).1. Given a surface integral of a vector field \mathbf{F} over a surface S, if the surface S is closed , the surface integral is equal to a triple integral of $\underline{\operatorname{div} \mathbf{F} \text { over the region bounded by the surface. (Divergence Theorem) }}$
2. Given a line integral of a vector field \mathbf{F} over a curve C, if \mathbf{F} is conservative, then the value of the line integral is the difference between f evaluated at the start point and end point of the curve, where $\underline{\nabla} f=\underline{\mathbf{F}}$. (FTC for line integrals)
3. Given a line integral of a vector field \mathbf{F} along a curve C, if the curve C is closed, the line integral is equal to a surface integral of $\nabla \times \mathbf{F}$ over any orientable surface that has the curve C as its boundary. (Stokes' Theorem)
4. Given a line integral of a vector field $\mathbf{F}=\langle P, Q\rangle$ over a planar closed curve C (oriented counter-clockwise), the line integral is equal to a double integral of $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ over the planar region bounded by C. (Green's Theorem)
 (Divergence Theorem)
5. To evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$ (over an orientable surface S), you can calculate $\int_{C} \underline{\mathbf{F} \cdot d \mathbf{r}}$, where C is the boundary of the surface S. (Stokes' Theorem)

Part II - Practice problems Theorems: $\int_{C} \nabla f \cdot d \vec{r}=f(\vec{r}(b))-f(\vec{F}(a))\left\|\int_{\partial S} \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}\right\| \iint_{\partial E} \vec{F} \cdot d \vec{S}=\iiint_{E} d / r F d V$

1. The figure below shows a surface S, which is a sphere of radius 5 centered at the origin, with the top cut off, so the upper edge of the surface lies at $z=4$. Use one of the theorems from Chapter 13 to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\langle 2 y, x, z\rangle$.

2. Consider the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the closed yurt-shaped surface shown below, and $\mathbf{F}=$ $\langle 3 x, 2 y, z\rangle$. Notice that the surface comprises three separate pieces: the circular base, the cylinder walls, and the conical top. The cylinder has radius 3 and height 2 , and the cone has radius 3 and height 3 .
(a) Discuss with your group the list of steps required to evaluate this surface integral directly.
(b) Use one of the theorems from Chapter 13 to set up a different type of integral with the same value as the given surface integral.
(c) Interpret the new integral geometrically to find its value without evaluating it.

$$
\begin{aligned}
& \text { The surface } S \text { is closed, so this } \\
& \text { feels like the Divergence theorem to me. } \\
& \iint_{S} \vec{F} \cdot d \vec{S}=\underbrace{\iint_{\substack{\text { top } \\
\text { cone }}} \vec{F} \cdot d \vec{S}+\iint_{\substack{\text { ste } \\
\text { the }}} \vec{F} \cdot d \vec{S}+\iint_{\substack{\text { bidion }}} \vec{F} \cdot d \vec{S}}_{\text {so much work! }} \\
& =\iiint_{E} \operatorname{div} \vec{F} d V \quad \text { Compute } \operatorname{div} \vec{F}: \quad 3+2+1=6 \\
& =\iiint 6 d V \\
& =6 \text { (volume of yurt) }
\end{aligned}
$$

3. Consider the two integrals $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$ and $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\langle y,-x, 0\rangle$, and where C_{1} is shown below (solid), and C_{2} is shown below (dashed). A top-view of the vector field \mathbf{F} is also shown. Do the two line integrals give the same value, or not? Explain.

Monday December 7

Reminders

Study for Quizzes 9 and 10

- [Important] Do Quizzes. 9 and 10 on. Wednesday between 7:30. and 10:00. AM

Math 2400, Final Exam

December 18, 2019

PRINT YOUR NAME: \qquad

PRINT INSTRUCTOR'S NAME: \qquad

Mark your section/instructor:

\square	Section 001	Shen Lu	8:00-8:50 AM
\square	Section 002	Euijin Hong	8:00-8:50 AM
\square	Section 003	Xingzhou Yang	8:00-8:50 AM
\square	Section 004	Mark Pullins	$9: 00-9: 50 \mathrm{AM}$
\square	Section 005	Carly Matson	$9: 00-9: 50 \mathrm{AM}$
\square	Section 006	Euijin Hong	$9: 00-9: 50 \mathrm{AM}$
\square	Section 007	Xingzhou Yang	10:00-10:50 AM
\square	Section 008	Harrison Stalvey	10:00-10:50 AM
\square	Section 009	Mengxiao Sun	$1: 00-1: 50 \mathrm{PM}$
\square	Section 010	Hanson Smith	$1: 00-1: 50 \mathrm{PM}$
\square	Section 011	Carla Farsi	$2: 00-2: 50 \mathrm{PM}$
\square	Section 012	Harrison Stalvey	$2: 00-2: 50 \mathrm{PM}$
\square	Section 013	Carla Farsi	$3: 00-3: 50 \mathrm{PM}$
\square	Section 014	Mengxiao Sun	$4: 00-4: 50 \mathrm{PM}$
\square	Section 015	Trevor Jack	$4: 00-4: 50 \mathrm{PM}$

- No calculators or cell phones or other electronic devices allowed at any time.
- You are allowed two $3^{\prime \prime} \times 5^{\prime \prime}$ index cards written on both sides.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 150 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- For cylindrical coordinates use (r, θ, z), and for spherical coordinates use (ρ, θ, ϕ).
- When done, give your exam to your proctor, who will mark your name off on a photo roster.

Completely fill in exactly one of the bubbles for your multiple choice answers for Problem 1 Parts (1) to (10).
(1) $A \subset B \subset D \subset \subset$
(2)

(3)

(4)
(5) A B CD E B
(6)
(8)
(9)
 $A \subset B C D \subset$ $A \subset B C D D E \subset F$
$A D B C D C D$

For Grader Use Only

Math 2400, Final Exam
 December 18, 2019

PRINT your NAME:

PRINT Instructor's name:
Mark your section/instructor:

\square	Section 001	Shen Lu	8:00-8:50 AM
\square	Section 002	Euijin Hong	8:00-8:50 AM
\square	Section 003	Xingzhou Yang	8:00-8:50 AM
\square	Section 004	Mark Pullins	9:00-9:50 AM
\square	Section 005	Carly Matson	9:00-9:50 AM
\square	Section 006	Euijin Hong	9:00-9:50 AM
\square	Section 007	Xingzhou Yang	10:00-10:50 AM
\square	Section 008	Harrison Stalvey	10:00-10:50 AM
\square	Section 009	Mengxiao Sun	1:00-1:50 PM
\square	Section 010	Hanson Smith	$1: 00-1: 50 \mathrm{PM}$
\square	Section 011	Carla Farsi	$2: 00-2: 50 \mathrm{PM}$
\square	Section 012	Harrison Stalvey	$2: 00-2: 50 \mathrm{PM}$
\square	Section 013	Carla Farsi	3:00-3:50 PM
\square	Section 014	Mengxiao Sun	$4: 00-4: 50 \mathrm{PM}$
\square	Section 015	Trevor Jack	$4: 00-4: 50 \mathrm{PM}$

- No calculators or cell phones or other electronic devices allowed at any time.
- You are allowed two $3^{\prime \prime} \times 5^{\prime \prime}$ index cards written on both sides.
- Show all your reasoning and work for full credit, except where otherwise indicated. Use full mathematical or English sentences.
- You have 150 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- For cylindrical coordinates use (r, θ, z), and for spherical coordinates use (ρ, θ, ϕ).
- When done, give your exam to your proctor, who will mark your name off on a photo roster.

Honor Code
 On my honor, as a University of Colorado at Boulder student, I have neither given nor received unauthorized assistance on this work.

Signature:

\qquad

For Grader Use Only

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	30	7	7	10	8	5	3	10	10	10	100
Score:											

1. Multiple Choice: For the following multiple choice questions, no partial credit is given. Fill in your answer on the bubble sheet.
(1) (3 points) Fill in your answer on the bubble sheet.

Suppose $f(x, y, z)=x+y^{2}+z^{2}$, and let S be the level surface $f(x, y, z)=8$. Find the equation of the tangent plane to S at the point $(-2,1,3)$.
(A) $(x+2)+2(y-1)+6(z-3)=0$
(B) $(x+2)+2(y-1)+2(z-3)=0$
(C) $(x-2)+2(y+1)+6(z+3)=0$
(D) $(x-2)+2(y+1)+6(z+3)=8$
(E) $(x-2)+2(y+1)+6(z+8)=0$
(F) $(x+2)+2(y-1)+6(z-3)=8$
(2) (3 points) Fill in your answer on the bubble sheet.

Find the parametrization of the part of the elliptic paraboloid $y=4 x^{2}+z^{2}-4$ that lies inside the cylinder $x^{2}+z^{2}=4$.
(A) $\left\langle x, 4 x^{2}+z^{2}-4, z\right\rangle$ for $-1 \leq x \leq 1$ and $-2 \leq z \leq 2$
(B) $\left\langle x, x^{2}+z^{2}, z\right\rangle \quad$ for $\quad-2 \leq x \leq 2$ and $0 \leq z \leq 4$
(C) $\left\langle x, 4-x^{2}-z^{2}, z\right\rangle \quad$ for $\quad-2 \leq x \leq 2$ and $-\sqrt{4-x^{2}} \leq z \leq \sqrt{4-x^{2}}$
(D) $\left\langle r \cos \theta, r^{2}+3 r^{2} \cos ^{2} \theta-4, r \sin \theta\right\rangle \quad$ for $\quad 0 \leq r \leq 2$ and $0 \leq \theta \leq 2 \pi$
(E) $\left\langle r \cos \theta, r^{2}-4,2 r \sin \theta\right\rangle \quad$ for $\quad 0 \leq r \leq 2$ and $0 \leq \theta \leq 2 \pi$
(F) $\left\langle\frac{1}{2} r \cos \theta, r^{2}-4, r \sin \theta\right\rangle \quad$ for $\quad 0 \leq r \leq 2$ and $0 \leq \theta \leq 2 \pi$
(3) (3 points) Fill in your answer on the bubble sheet.

Suppose

$$
f(x, y)=y e^{-x}+3 x
$$

Find the direction of the maximum rate of increase of $f(x, y)$ at $(0,1)$.
(A) $\langle 2,1\rangle$
(B) $\langle-2,-1\rangle$
(C) $\langle 3,0\rangle$
(D) $\langle-3,0\rangle$
(E) $\left\langle 2 e^{-1}, e\right\rangle$
(F) $\left\langle-2 e^{-1},-e\right\rangle$
(4) (3 points) Fill in your answer on the bubble sheet.

Find the following limit, if it exists.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-2 y^{2}}{x^{2}+y^{2}}
$$

(A) 0
(B) 1
(C) -1
(D) 2
(E) -2
(F) The limit does not exist.
(5) (3 points) Fill in your answer on the bubble sheet.

Let

$$
f(x, y)= \begin{cases}\frac{x+2}{x^{2}+y^{2}+1}, & \text { if }(x, y) \neq(0,0) \\ a & \text { if }(x, y)=(0,0)\end{cases}
$$

Find a, such that the function $f(x, y)$ is continuous at $(0,0)$.
(A) 0
(B) 1
(C) -1
(D) 2
(E) -2
(F) There is no a for which f is continuous at $(0,0)$.
(6) (3 points) Fill in your answer on the bubble sheet. Let

$$
f(x, y)=\left(x^{3}-x\right)\left(y^{2}-1\right)
$$

Find $f_{x y}(x, y)$.
(A) $\left(x^{3}-x\right)(2 y)$
(B) $\left(3 x^{2}-1\right)(2 y)$
(C) $\left(3 x^{2}-1\right)\left(y^{2}-1\right)+\left(x^{3}-x\right)(2 y)$
(D) $\left(3 x^{2}-1\right)\left(y^{2}-1\right)$
(E) 0
(F) $6 x^{2} y+2 y-3 x^{2}-1$
(7) (3 points) Fill in your answer on the bubble sheet.

Let S be the surface parametrized by $\vec{r}(\theta, z)=\langle 3 \cos (\theta), 3 \sin (\theta), z\rangle$, for $0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 2$. Evaluate

$$
\iint_{S} 1 d S
$$

(A) π
(B) 2π
(C) 3π
(D) 9π
(E) 12π
(F) 18π
(8) (3 points) Fill in your answer on the bubble sheet.

Let

$$
\vec{F}(x, y, z)=\langle x y z, \quad x y+y z+z x, \quad x+y+z y\rangle .
$$

Find curl \vec{F}.
(A) $\langle y z, \quad x+z, \quad 1\rangle$
(B) $\langle 1-x-y+z, \quad-1+x y, \quad y+z-x z\rangle$
(C) $\langle 1+x+y, \quad x y, \quad x z\rangle$
(D) $\langle y z+y+z+1, \quad x z+x+z+1, \quad x y+x+y+1\rangle$
(E) $\langle 1, \quad 1, \quad 1\rangle$
(F) $\langle y+z, \quad x+z, \quad x+y\rangle$
(9) (3 points) Fill in your answer on the bubble sheet. Let

$$
\vec{F}(x, y, z)=\left\langle x^{3}+y^{2}, z e^{-y}, x^{2} \sin (z)\right\rangle .
$$

Find $\operatorname{div} \vec{F}$
(A) $\left\langle 3 x^{2},-e^{-y} z, x^{2} \cos (z)\right\rangle$
(B) $\left\langle-e^{-y},-2 x \sin (z),-2 y\right\rangle$
(C) $\left\langle 3 x^{2}+2 y,-e^{-y}, 2 x \cos (z)\right\rangle$
(D) $3 x^{2}-z e^{-y}+x^{2} \cos (z)$
(E) $3 x^{2}+2 y-e^{-y}+2 x \cos (z)$
(F) $3 x^{2}+z e^{-y}-x^{2} \cos (z)$
(10) (3 points) Fill in your answer on the bubble sheet.

Let f be a scalar-valued function of three variables and \vec{F} a vector field on \mathbb{R}^{3}. Which of the following must be true for all such f and \vec{F} ? (Assume all functions and their components are polynomials.)
(A) $\operatorname{div}(\operatorname{div} f)=0$
(B) $\operatorname{div}(\operatorname{grad} f)=0$
(C) $\operatorname{curl}(\operatorname{div} f)=0$
(D) $\operatorname{div}(\operatorname{curl}(\operatorname{curl} \vec{F}))=0$
(E) $\operatorname{curl}(\operatorname{curl}(\operatorname{div} \vec{F}))=0$
(F) $\operatorname{grad}(\operatorname{curl} \vec{F})=0$
2. (7 points) Convert the following integral from rectangular coordinates to cylindrical coordinates. Fill in all $\mathbf{7}$ blanks.

$$
\int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{18-2 x^{2}-2 y^{2}} y z d z d y d x
$$

3. (7 points) Convert the following integral from spherical coordinates to rectangular coordinates. Fill in all $\mathbf{7}$ blanks.
$\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{2 \sqrt{2}} \sin \phi d \rho d \phi d \theta$

4. (10 points) Evaluate the integral

$$
\int_{C}\left(x y^{2}+y\right) d x+\left(2 x^{2} y+e^{y^{2}}\right) d y
$$

where C is boundary of the rectangle in the $x y$-plane oriented clockwise with vertices $(0,0)$, $(0,3),(2,3)$, and $(2,0)$.

Is $\vec{F}=\nabla f$? No because curl $\vec{F} \neq \overrightarrow{0}$. can't use aTLI

5. (8 points) For the following function, find all local maximums, local minimums, and saddle points.

$$
f(x, y)=x^{4}-2 x^{2}+y^{3}-3 y
$$

6. (5 points) Consider the vector field \vec{F} on \mathbb{R}^{2} given by

$$
\vec{F}(x, y)=\langle\pi \cos (\pi x)+y, x+2 y\rangle .
$$

Find a potential function $f(x, y)$ for $\vec{F}(x, y)$ such that $\nabla f=\vec{F}$.

$$
\left.\begin{array}{rl}
\int \nabla f \cdot d \vec{r} & =\left.f\right|_{r(a)} ^{r(b)} \\
\iint_{S} c u r l \\
\vec{F} \cdot d \vec{S} & =\int_{\partial S} \vec{F} \cdot d \vec{r} \\
& \rightarrow \iint_{S} Q_{x}
\end{array}\right) \cdot P_{y} d A=\int_{\partial S} \vec{F} \cdot d \vec{F} \quad \begin{aligned}
& \iiint_{E} \operatorname{div} \vec{F} d V=\iint_{\partial E} \vec{F} \cdot d \vec{S}
\end{aligned}
$$

7. (3 points) Let $\vec{F}=\nabla g$ where $g(x, y)=e^{\cos (\pi x)}+x y$. Evaluate the integral

$$
\int_{C} \vec{F} \cdot d \vec{r}
$$

where C is the path pictured below from $\left(-\frac{1}{2},-2\right)$ to $(2,1)$.

Page 9 of 12
8. (10 points) Let S be the helicoid parameterized by

$$
\vec{r}(u, v)=\langle u \sin v, 2 v, u \cos v\rangle \quad \text { for } 0 \leq u \leq 1, \quad 0 \leq v \leq \pi
$$

oriented in the direction of the positive y-axis. Let \vec{F} be a vector field given by

$$
\vec{F}=x y \vec{i}+\left(y^{2}+1\right) \vec{j}+y z \vec{k}
$$

Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$.
$\operatorname{div} \vec{F}=y+2 y+y \neq 0$ \vec{F} not the curl of another vector field. Not Stokes'
S is not closed, ie not the boundary of a solid E. Not Divergence Theorem

Direct computation

9. (10 points) Let \vec{F} be a vector field on \mathbb{R}^{3} given by

$$
\vec{F}=(\cos x+y) \vec{i}+\left(e^{y}+x z^{2}\right) \vec{j}+\left(2 z^{2}+y x\right) \vec{k} .
$$

Let C be a circle of radius 1 centered at $(0,0,2)$ lying on the plane $z=2$, which is oriented counterclockwise when viewed from above. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$.

$$
\begin{aligned}
& \text { Draw C } \\
& \operatorname{curl} F=\left|\begin{array}{ccc}
i & j & k \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
\cos (x+y) & e^{y}+x z^{2} & 2 z^{2}+x y
\end{array}\right| \\
& =\left\langle x-x,-(y-0), z^{2}+\sin (x+y)\right\rangle \\
& =\left\langle 0,-y, z^{2}+\sin (x+y)\right\rangle \\
& \text { curl } \vec{F} \neq \overrightarrow{0} \text { so } \vec{F} \text { not conservative } \\
& \text { Not Fundamental The of Line Integrals } \\
& \text { But } C \text { is a closed curve, ie the boundary of the diskinside, } \\
& \text { so use Stokes' with } S \text { : } \vec{r}(u, v\rangle=\begin{array}{c}
\langle u, v, 2\rangle \\
u^{2}+v^{2} \leqslant 1
\end{array} ~ \text { oriented upward. }
\end{aligned}
$$

10. (10 points) Let

$$
\vec{F}(x, y, z)=\left(x^{3}+e^{y^{2}+z^{2}}\right) \vec{i}+\left(\cos \left(x^{4}\right)+y^{3}\right) \vec{j}+\left(\ln \left(x^{2}+4\right)+z^{3}\right) \vec{k}
$$

be a vector field on \mathbb{R}^{3}, region E be the part of the solid sphere $x^{2}+y^{2}+z^{2} \leq 4$ in the first octant, and S be the boundary of E oriented outward. Find the total flux of \vec{F} through S :

$$
\iint_{S} \vec{F} \cdot d \vec{S}
$$

$$
\int \nabla f \cdot d \vec{r}=\left.f\right|_{r(a)} ^{r(b)}
$$

$$
\begin{aligned}
& \iint_{S} \text { curl } \vec{F} \cdot d \vec{S}=\int_{\partial S} \vec{F} \cdot d \vec{r} \\
& \rightarrow \iint_{S} Q_{x}-P_{y} d A=\int_{\partial s} \vec{F} \cdot d \vec{F}
\end{aligned}
$$

$$
\operatorname{div} F=3 x^{2}+3 y^{2}+3 z^{2} \neq 0
$$

$$
\iiint_{E} \operatorname{div} \vec{F} d V=\iint_{\partial E} \vec{F} \cdot d \vec{S}
$$

$$
\text { no stokes' } b / c \vec{F} \text { not incompressible }
$$

$$
\text { But } S \text { is the closed boundary of the solid } E
$$

So use Divergence the

$$
\iiint 3\left(x^{2}+y^{2}+z^{2}\right) d V
$$

$$
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2} 3 \rho^{2} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta
$$

-hank you

- For hybrid sections, only: MWF are in person until Fall Break, and TTh are remote for the duration of the semester. M-F are remote after Fall Break.
- For remote sections, only: M-F are remote for the duration of the semester.
- WebAssign assignments will be due each Sunday for the previous week's topics. However, you should complete each assignment during the week after the topic has been covered.
- The textbook section coverage for each biweekly quiz can be found at the end of this document.

Monday	Tuesday	Wednesday	Thursday	Friday
$\begin{aligned} & \hline \text { Aug 24th } \\ & 9.1-3 \mathrm{D} \\ & \text { Coordinate } \\ & \text { Systems } \end{aligned}$	25th 9.2 - Vectors Check-in 1 A: Intro to Mathematica (at home) A: Guidelines for 3D Graphing (at home)	26th 9.2 (cont.) A: Vectors and Mathematica (at home)	27th P: Mathematica and 3D Graphing HW 1 due	28th 9.3 - Dot Product Check-in 2 Check-in 3 (Proctorio check, due Sunday)
31st 9.4 - Cross Product	Sep 1st 9.5 - Equations of Lines and Planes QUIZ 1	2nd 9.6 - Functions and Surfaces	3rd P: What is This Thing? \#1 HW 2 due	4th 9.7-Cylindrical and Spherical Coordinates Check-in 4
7th Labor Day No Class	8th A: Quadric Surfaces Check-in 5	9th 10.1-Vector Functions and Space Curves	10th P: Parametrized Curves and Surfaces HW 3 due	11th 10.2 - Derivatives and Integrals of Vector Functions Check-in 6
$\begin{aligned} & \text { 14th } \\ & \text { 10.3 - Arc Length } \end{aligned}$	15th 10.5 - Parametric Surfaces A: Parametric Matching QUIZ 2	$\begin{aligned} & \hline 16 \text { th } \\ & 10.5 \text { (cont.) } \end{aligned}$	17th P: Introduction to Line Integrals HW 4 due	18th 11.1 - Functions of Several Variables Check-in 7
21st 11.2 - Limits and Continuity	22nd 11.2 (cont.) Check-in 8	23rd 11.3 - Partial Derivatives	24th P: Limits and Polar Coordinates HW 5 due	25th 11.4 - Tangent Planes and Linear Approximations Check-in 9

Monday	Tuesday	Wednesday	Thursday	Friday
28th 11.5 - The Chain Rule	29th A: What is the Derivative of This Thing? A: Composition of Functions QUIZ 3	30th 11.6 - Directional Derivatives and the Gradient Vector	Oct 1st P: Gradient Graphically HW 6 due	2nd 11.6 (cont.) Check-in 10
5th 11.7- Maximum and Minimum Values	6th 11.7 (cont.) Check-in 11	7th 11.8 - Lagrange Multipliers	8th P: Optimization HW 7 due	9th 12.1 - Double integrals over rectangles 12.2 - Iterated Integrals Check-in 12
12th 12.2 (cont.) 12.3 - Double Integrals Over General Regions	$\begin{aligned} & \text { 13th } \\ & 12.3 \text { (cont.) } \end{aligned}$ QUIZ 4	14th 12.4 - Double Integrals in Polar Coordinates	15th P: Slices vs. Skyscrapers and Order of Integration HW 8 due	16 th 12.4 (cont.) Check-in 13
19th 12.5 - Applications of Double Integrals	20th 12.6 - Surface Area Check-in 14	21st 12.7-Triple Integrals	22nd P: Applications of Multiple Integrals HW 9 due	23rd 12.7 (cont.) Check-in 15
26th 12.8 - Triple Integrals in Cylindrical and Spherical Coordinates	$\begin{aligned} & \text { 27th } \\ & 12.8 \text { (cont.) } \end{aligned}$ QUIZ 5	$\begin{aligned} & \hline 28 \text { th } \\ & 12.8 \text { (cont.) } \end{aligned}$	29th P: Introduction to Surface Integrals HW 10 due	30th 12.9 - Change of Variables in Multiple Integrals Check-in 16
Nov 2nd 12.9 (cont.)	3rd 13.1-Vector Fields A: Vector Field Matching Check-in 17	4th 13.2 - Line Integrals Over Scalar Functions	5th P: Line Integrals Over Vector Fields HW 11 due	6th 13.2 - Line Integrals Over Vector Fields Check-in 18
9th 13.3 - Fundamental Theorem of Calculus for Line Integrals	10th 13.3 (cont.) QUIZ 6	11th 13.4 - Green's Theorem	12th P: What is This Thing? \#2 (Line Integrals) HW 12 due	13th 13.5-Curl and Divergence Check-in 19

Monday	Tuesday	Wednesday	Thursday	Friday
$\begin{aligned} & \text { 16th } \\ & 13.5 \text { (cont.) } \end{aligned}$	17th A: Conservative or Not? Check-in 20	18th 13.6 - Surface Integrals Over Scalar Fields	19th P: Introduction to Flux HW 13 due	20th 13.6 - Surface Integrals Over Vector Fields Check-in 21 (last)
23rd 13.7 - Stokes' Theorem	24th Review QUIZ 7 QUIZ 8	25th Remote office hours during class time	26th Fall Break No Class	27th Fall Break No Class
30th 13.7 (cont.) Corrections for Quizzes $7+8$ due	$\begin{aligned} & \text { Dec 1st } \\ & \text { 13.8- Divergence } \\ & \text { Theorem } \end{aligned}$	2nd 13.8 (cont.)	3rd P: What is This Thing? \#3 (Types of Integrals) HW 14 due	4th A: Fundamental Theorem Practice A: Fundamental Theorem Matching
7th Review	8th Fall Reading Day No Class	9th	10th	11th

Quiz Coverage

All quizzes are 30 minutes long. Quizzes $1-8$ will be open between 7 pm and 10 pm on the date indicated below. Quizzes 9 and 10 will be open during the final exam time on the University's schedule.

- Quiz 1 (Sep 1): 9.1-9.3
- Quiz 2 (Sep 15): 9.4-10.2
- Quiz 3 (Sep 29): 10.3-11.4
- Quiz 4 (Oct 13): 11.5-12.1
- Quiz 5 (Oct 27): 12.2-12.7
- Quiz 6 (Nov 10): 12.8-13.2
- Quiz 7 (Nov 24): 13.3-13.6
- Quiz 8 (Nov 24): comprehensive
- Quiz 9 (during the assigned final exam time): 13.7-13.8
- Quiz 10 (during the assigned final exam time): comprehensive

[^0]: surface $=\operatorname{Plot} 3 D\left[x y /\left(x^{\wedge} 2+y^{\wedge} 2\right),\{x,-2,2\},\{y,-2,2\}\right.$,
 Mesh -> 5,
 PlotStyle -> Directive[Orange, Opacity[0.8], Specularity[White, 30]]
];
 xapproach $=$ ParametricPlot3D[\{t, 0, 0\}, $\{t,-2,2\}$, PlotStyle $->$ Directive[Blue, Thickness[.01]]];
 yapproach $=$ ParametricPlot3D[\{0, $\mathrm{t}, 0\},\{\mathrm{t},-2,2\}$, PlotStyle -> Directive[Yellow, Thickness [.01]]];
 diagonalapproach $=$ ParametricPlot3D[\{t, t, 1/2\}, $\{\mathrm{t},-2,2\}$, PlotStyle \rightarrow Directive[Green, Thickness [01]]];
 Show[\{xapproach, yapproach, diagonalapproach, surface\},
 AxesLabel -> $\{x, y, z\}$,
 AxesOrigin $\rightarrow\{0,0,0\}$,
 AxesOrigin $->\{0$,
 Boxed $->$ False,
 Boxed -> False,
 AxesStyle -> \{Black, Black, Red $\}$
 RotationAction \rightarrow "Clip",
 AspectRatio -> 1.5
].

