Name: \qquad

1. For what interval(s) is $f(x)=x e^{x}$ concave up?

We seek intervals where $f^{\prime \prime}>0$
$f^{\prime}(x)=x e^{x}+e^{x}$
$f^{\prime \prime}(x)=x e^{x}+2 e^{x}=e^{x}(x+2)$
$f^{\prime \prime}(x)=0$ when $e^{x}=0$ (which is never since $e^{x}=0$ has no solutions) and when $x+2=0$ (at $x=-2$)
Now we draw a number line and choose points from each interval to find the sign of $f^{\prime \prime}(x)$ in each interval.

In conclusion, $f(x)$ is concave up on $(-2, \infty)$ because $f^{\prime \prime}>0$ there.
2. For what interval(s) is $g(x)=\frac{1}{x^{2}+1}$ decreasing?

We seek intervals where $g^{\prime}(x)<0$
$g(x)=\left(x^{2}+1\right)^{-1}$
$g^{\prime}(x)=-\left(x^{2}+1\right)^{-1}(2 x)=-\frac{2 x}{\left(x^{2}+1\right)^{2}}$
$g^{\prime}(x)=0$ when $2 x=0,($ at $x=0)$
$g^{\prime}(x)$ is undefined when $\left(x^{2}+1\right)^{2}=0,($ no solutions $)$

Now we draw a number line and choose points from each interval to find the sign of $f^{\prime \prime}(x)$ in each interval.

We conclude $g(x)$ is decreasing on $(0, \infty)$ because $g^{\prime}(x)<0$ on that interval.
3. Write the equation of the tangent line to $f(x)=\tan \left(e^{x}\right)$ at $x=\ln \left(\frac{\pi}{4}\right)$.

Slope: $f^{\prime}(x)=e^{x} \sec ^{2}\left(e^{x}\right) \quad \Longrightarrow \quad f^{\prime}\left(\ln \frac{\pi}{4}\right)=e^{\ln \frac{\pi}{4}} \sec ^{2}\left(e^{\ln \frac{\pi}{4}}\right)=\frac{\pi}{4} \sec ^{2}\left(\frac{\pi}{4}\right)=\frac{\pi}{2}$

Point: $f\left(\ln \frac{\pi}{4}\right)=1$

Equation of line: $y-1=\frac{\pi}{2}\left(x-\ln \frac{\pi}{4}\right)$
4. The position of a particle undergoing simple harmonic motion is given by $s(t)=A \cos (\omega t+\delta)$ where A, ω, and δ are constants.
(a) What is the velocity of the particle at time t ?

Velocity is the derivative of the position function, so $v(t)=s^{\prime}(t)=-\omega A \sin (\omega t+\delta)$.
(b) When is the velocity of the particle 0 ?

$$
-\omega A \sin (\omega t+\delta)=0 \quad \Longrightarrow \quad \sin (\omega t+\delta)=0 \quad \Longrightarrow \quad \omega t+\delta=k \pi \quad \Longrightarrow \quad t=\frac{k \pi-\delta}{\omega}, \text { for }
$$

integer k
5. Air is being bumped into a spherical weather balloon. At any time t, the volume of the balloon is $V(t)$ and its radius is $r(t)$.
(a) What do the derivatives $\frac{d V}{d r}$ and $\frac{d V}{d t}$ represent?

$$
\begin{aligned}
& \frac{d V}{d r} \text { is how fast volume changes as radius increases. } \\
& \frac{d V}{d t} \text { is how fast volume changes as time increases. }
\end{aligned}
$$

(b) Express $\frac{d V}{d t}$ in terms of $\frac{d r}{d t}$.

$$
\frac{d V}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d t}
$$

6. Suppose f is differentiable for all real numbers and a is a real number.
(a) Let $F(x)=f\left(x^{a}\right)$. Find $F^{\prime}(x)$.

$$
F^{\prime}(x)=f^{\prime}\left(x^{a}\right)\left(a x^{a-1}\right)
$$

(b) Let $G(x)=[f(x)]^{a}$. Find $G^{\prime}(x)$.

$$
G^{\prime}(x)=a[f(x)]^{a-1} f^{\prime}(x)
$$

7. Discovery: Extended Chain Rule

$$
\text { Let } y=e^{(5 x-1)^{2}}
$$

(a) The function y given above is the composition of three functions. Suppose $y=f(g(h(x)))$. Can you identify the outer function, the middle function, and the inner function? (Note: there may be more than one right answer.)

Outer function: $f(w)=$ \qquad
Middle function: $g(z)=$ \qquad
Inner function: $h(x)=$ \qquad
(b) Differentiate $y=e^{(5 x-1)^{2}}$ by first expanding $(5 x-1)^{2}$ and then using the chain rule.

$$
y=e^{25 x^{2}-10 x+1} \quad \Longrightarrow \quad y^{\prime}=(50 x-10) e^{25 x^{2}-10 x+1}
$$

(c) Differentiate $f(w), g(z)$, and $h(x)$. (i.e. the outer, middle, and inner functions from part (a).)

Outer function: $f^{\prime}(w)=$ \qquad
Middle function: $g^{\prime}(z)=$ \qquad

Inner function: $h^{\prime}(x)=$ \qquad
(d) Use your answers from parts (b) and (c) to guess the "extended chain rule". In other words, what is the formula for $[f(g(h(x)))]^{\prime} ?$

$$
f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x)
$$

