Midterm 2

Linear Algebra: Matrix Methods

MATH 2130

Fall 2022

Friday October 28, 2022

UPLOAD THIS COVER SHEET!

NAME: _____

PRACTICE EXAM SOLUTIONS

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single **.pdf** to **Canvas**, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam.

1. • Compute the determinant of each of the following matrices:

(a) (10 points)
$$A = \begin{pmatrix} 4 & -1 & 1 \\ -1 & -2 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

SOLUTION:

Solution. We have $\det A = -1$ The fastest way to see this may be to expand off of the third column (or even to interchange two columns, twice); however, to use the standard method, we have

$$\det A = (4)[(-2)(0) - (0)(1)] - (-1)[(-1)(0) - (0)(0)] + (1)[(-1)(1) - (-2)(0)] = -1.$$

(b) (10 points)
$$B = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & \pi \\ 1 & 0 & e & -4 & 8 & 3^{-5} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 & 2 & 10^4 \\ 0 & 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & -1 & 2 & 0 \end{pmatrix}$$

SOLUTION:

Solution. We have $\det B = -2$ We use row operations:

0	1	0	0	0	π		1	0	е	-4	8	3^{-5}		1	0	е	-4	8	3^{-5}
1	0	е	-4	8	3^{-5}		0	1	0	0	0	π		0	1	0	0	0	π
0	0	0	1	0	0	$(-(1)^2)$	0	5	1	0	2	10^{4}	$(1)^2$	0	0	1	0	2	$10^4 - 5\pi$
0	5	1	0	2	10^{4}	_ (-1)	0	0	0	1	0	0	_ (-1)	0	0	0	1	0	0
0	0	0	3	0	1		0	0	0	3	0	1		0	0	0	3	0	1
0	0	0	-1	2	0		0	0	0	-1	2	0		0	0	0	-1	2	0

$$= (-1)^2 \begin{vmatrix} 1 & 0 & e & -4 & 8 & 3^{-5} \\ 0 & 1 & 0 & 0 & 0 & \pi \\ 0 & 0 & 1 & 0 & 2 & 10^4 - 5\pi \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{vmatrix} = (-1)^3 \begin{vmatrix} 1 & 0 & e & -4 & 8 & 3^{-5} \\ 0 & 1 & 0 & 0 & 0 & \pi \\ 0 & 0 & 1 & 0 & 2 & 10^4 - 5\pi \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{vmatrix} = -2$$

1	
20 points	

2. (20 points) • Let V_1 and V_2 be real vector spaces. On the product

$$V_1 \times V_2 = \{ (\mathbf{v}_1, \mathbf{v}_2) : \mathbf{v}_1 \in V_1, \, \mathbf{v}_2 \in V_2 \},\$$

define addition and scaling rules by

$$(\mathbf{v}_1, \mathbf{v}_2) + (\mathbf{w}_1, \mathbf{w}_2) = (\mathbf{v}_1 + \mathbf{w}_1, \mathbf{v}_2 + \mathbf{w}_2)$$

$$\lambda \cdot (\mathbf{v}_1, \mathbf{v}_2) = (\lambda \cdot \mathbf{v}_1, \lambda \cdot \mathbf{v}_2).$$

Show that these addition and scaling rules make $V_1 \times V_2$ into a real vector space.

SOLUTION:

Solution. For brevity of notation, I will write $V = V_1 \times V_2$.

- 1. (Group laws)
 - (a) (Additive identity) I claim there exists an element $\mathcal{O} \in V$ such that for all $\mathbf{v} \in V$, $\mathbf{v} + \mathcal{O} = \mathbf{v}$. Indeed, set $\mathcal{O} = (\mathcal{O}_1, \mathcal{O}_2)$, where $\mathcal{O}_1 \in V_1$ is the additive identity for V_1 and $\mathcal{O}_2 \in V_2$ is the additive identity for V_2 . Then for any $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2) \in V = V_2 \times V_2$, we have

$$\mathbf{v} + \mathscr{O} = (\mathbf{v}_1, \mathbf{v}_2) + (\mathscr{O}_1, \mathscr{O}_2)$$

= $(\mathbf{v}_1 + \mathscr{O}_1, \mathbf{v}_2 + \mathscr{O}_2)$ Def. of + in V
= $(\mathbf{v}_1, \mathbf{v}_2)$ (1)(a) for V_1 and V_2
= \mathbf{v} .

(b) (Additive inverse) I claim that for each $\mathbf{v} \in V$ there exists an element $-\mathbf{v} \in V$ such that $\mathbf{v} + (-\mathbf{v}) = \mathcal{O}$.

Indeed, given $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2) \in V = V_1 \times V_2$, set $-\mathbf{v} = (-\mathbf{v}_1, -\mathbf{v}_2)$, where $-\mathbf{v}_1 \in V_1$ is the additive inverse of \mathbf{v}_1 , and $-\mathbf{v}_2 \in V_2$ is the additive inverse of \mathbf{v}_2 . Then

$$\mathbf{v} + (-\mathbf{v}) = (\mathbf{v}_1, \mathbf{v}_2) + (-\mathbf{v}_1, -\mathbf{v}_2)$$

= $(\mathbf{v}_1 + (-\mathbf{v}_1), \mathbf{v}_2 + (-\mathbf{v}_2))$ Def. of + in V
= $(\mathcal{O}_1, \mathcal{O}_2)$ (1)(b) for V₁ and V₂
= \mathcal{O} .

Page 3 of 14

(c) (Associativity of addition) I claim that for all $u, v, w \in V$,

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$$

Indeed, given $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2), \mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2), \mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2) \in V = V_1 \times V_2$, we have

$$\begin{aligned} (\mathbf{u} + \mathbf{v}) + \mathbf{w} &= ((\mathbf{u}_1, \mathbf{u}_2) + (\mathbf{v}_1, \mathbf{v}_2)) + (\mathbf{w}_1, \mathbf{w}_2) \\ &= (\mathbf{u}_1 + \mathbf{v}_1, \mathbf{u}_2 + \mathbf{v}_2) + (\mathbf{w}_1, \mathbf{w}_2) & \text{Def. of } + \text{in } V \\ &= ((\mathbf{u}_1 + \mathbf{v}_1) + \mathbf{w}_1, (\mathbf{u}_2 + \mathbf{v}_2) + \mathbf{w}_2) & \text{Def. of } + \text{in } V \\ &= (\mathbf{u}_1 + (\mathbf{v}_1 + \mathbf{w}_1), \mathbf{u}_2 + (\mathbf{v}_2 + \mathbf{w}_2)) & (1)(c) \text{ for } V_1 \text{ and } V_2 \\ &= (\mathbf{u}_1, \mathbf{u}_2) + (\mathbf{v}_1 + \mathbf{w}_1, \mathbf{v}_2 + \mathbf{w}_2) & \text{Def. of } + \text{in } V \\ &= (\mathbf{u}_1, \mathbf{u}_2) + ((\mathbf{v}_1, \mathbf{v}_2) + (\mathbf{w}_1, \mathbf{w}_2)) & \text{Def. of } + \text{in } V \\ &= \mathbf{u} + (\mathbf{v} + \mathbf{w}). \end{aligned}$$

2. (Abelian property)

(a) (Commutativity of addition) For all $\mathbf{u}, \mathbf{v} \in V$,

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}.$$

Indeed, given $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$, $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2) \in V = V_1 \times V_2$, we have

$$u + v = (\mathbf{u}_{1}, \mathbf{u}_{2}) + (\mathbf{v}_{1}, \mathbf{v}_{2})$$

= $(\mathbf{u}_{1} + \mathbf{v}_{1}, \mathbf{u}_{2} + \mathbf{v}_{2})$ Def. of + in V
= $(\mathbf{v}_{1} + \mathbf{u}_{1}, \mathbf{v}_{2} + \mathbf{u}_{2})$ (2)(a) for V₁ and V₂
= $(\mathbf{v}_{1}, \mathbf{v}_{2}) + (\mathbf{u}_{1}, \mathbf{u}_{2})$ Def. of + in V
= $\mathbf{v} + \mathbf{u}$.

3. (Module conditions)

(a) I claim that for all $\lambda \in K$ and all $\mathbf{u}, \mathbf{v} \in V$,

$$\lambda \cdot (\mathbf{u} + \mathbf{v}) = (\lambda \cdot \mathbf{u}) + (\lambda \cdot \mathbf{v}).$$

Indeed, given $\lambda \in K$ and $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$, $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2) \in V = V_1 \times V_2$, we have

$$\begin{aligned} \lambda \cdot (\mathbf{u} + \mathbf{v}) &= \lambda \cdot ((\mathbf{u}_1, \mathbf{u}_2) + (\mathbf{v}_1, \mathbf{v}_2)) \\ &= \lambda \cdot (\mathbf{u}_1 + \mathbf{v}_1, \mathbf{u}_2 + \mathbf{v}_2) & \text{Def. of } + \text{in } V \\ &= (\lambda \cdot (\mathbf{u}_1 + \mathbf{v}_1), \lambda \cdot (\mathbf{u}_2 + \mathbf{v}_2)) & \text{Def. of } \cdot \text{in } V \\ &= (\lambda \cdot \mathbf{u}_1 + \lambda \cdot_1 \mathbf{v}_1, \lambda \cdot \mathbf{u}_2 + \lambda \cdot \mathbf{v}_2) & (3)(a) \text{ for } V_1 \text{ and } V_2 \\ &= (\lambda \cdot \mathbf{u}_1, \lambda \cdot \mathbf{u}_2) + (\lambda \cdot_1 \mathbf{v}_1, \lambda \cdot \mathbf{v}_2) & \text{Def. of } + \text{in } V \\ &= \lambda \cdot (\mathbf{u}_1, \mathbf{u}_1) + \lambda \cdot (\mathbf{v}_1, \mathbf{v}_2) & \text{Def. of } \cdot \text{in } V \\ &= (\lambda \cdot \mathbf{u}) + (\lambda \cdot \mathbf{v}) & \text{Def. of } \cdot \text{in } V \end{aligned}$$

(b) I claim that for all $\lambda, \mu \in K$, and all $\mathbf{v} \in V$,

$$(\lambda + \mu) \cdot \mathbf{v} = (\lambda \cdot \mathbf{v}) + (\mu \cdot \mathbf{v}).$$

Indeed, given $\lambda, \mu \in K$ and $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2) \in V = V_1 \times V_2$, we have

$$\begin{aligned} (\lambda + \mu) \cdot \mathbf{v} &= (\lambda + \mu) \cdot (\mathbf{v}_1, \mathbf{v}_2) \\ &= ((\lambda + \mu) \cdot \mathbf{v}_1, (\lambda + \mu) \cdot \mathbf{v}_2) & \text{Def. of } \cdot \text{ in } V \\ &= (\lambda \cdot \mathbf{v}_1 + \mu \cdot \mathbf{v}_1, \lambda \cdot \mathbf{v}_2 + \mu \cdot \mathbf{v}_2) & (3)(b) \text{ for } V_1 \text{ and } V_2 \\ &= (\lambda \cdot \mathbf{v}_1, \lambda \cdot \mathbf{v}_2) + (\mu \cdot \mathbf{v}_1, \mu \cdot \mathbf{v}_2 \mathbf{v}_2) & \text{Def. of } + \text{ in } V \\ &= \lambda \cdot (\mathbf{v}_1, \mathbf{v}_2) + \mu \cdot (\mathbf{v}_1, \mathbf{v}_2) & \text{Def. of } + \text{ in } V \\ &= (\lambda \cdot \mathbf{v}) + (\mu \cdot \mathbf{v}). \end{aligned}$$

(c) For all $\lambda, \mu \in K$, and all $\mathbf{v} \in V$,

$$(\lambda \mu) \cdot \mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v}).$$

Indeed, given $\lambda, \mu \in K$ and $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2) \in V = V_1 \times V_2$, we have

$$\begin{aligned} (\lambda \mu) \cdot \mathbf{v} &= (\lambda \mu) \cdot (\mathbf{v}_1, \mathbf{v}_2) \\ &= ((\lambda \mu) \cdot \mathbf{v}_1, (\lambda \mu) \cdot \mathbf{v}_2) & \text{Def. of } \cdot \text{ in } V \\ &= (\lambda \cdot (\mu \cdot \mathbf{1}, \mathbf{v}_1), \lambda \cdot (\mu \cdot \mathbf{v}_2)) & (3)(c) \text{ for } V_1 \text{ and } V_2 \\ &= \lambda \cdot (\mu \cdot \mathbf{v}_1, \mu \cdot \mathbf{v}_2) & \text{Def. of } \cdot \text{ in } V \\ &= \lambda \cdot (\mu \cdot (\mathbf{v}_1, \mathbf{v}_2)) & \text{Def. of } \cdot \text{ in } V \\ &= \lambda \cdot (\mu \cdot \mathbf{v}). \end{aligned}$$

(d) I claim that for all $\mathbf{v} \in V$,

 $1 \cdot \mathbf{v} = \mathbf{v}.$

Indeed, given $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2) \in V = V_1 \times V_2$, we have

$$1 \cdot \mathbf{v} = 1 \cdot (\mathbf{v}_1, \mathbf{v}_2)$$

= $(1 \cdot \mathbf{v}_1, 1 \cdot \mathbf{v}_2)$ Def. of \cdot in V
= $(\mathbf{v}_1, \mathbf{v}_2)$ (3)(d) for V_1 and V_2
= \mathbf{v} .

2	
20 points	

3. (20 points) • Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ be bases for a real vector space *V*, and suppose that

Find the change-of-coordinates matrix to go from the coordinates with respect to the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ to the coordinates with respect to the basis $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

SOLUTION:

Solution. The change-of-coordinates matrix to go from the coordinates with respect to the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ to the coordinates with respect to the basis $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ can be read off from the equations above as the matrix

- 4	-1	1	Т	4	3	7	
3	2	-1	=	-1	2	23	
7	23	-2		1	-1	-2	

3	
20 points	

4. • Consider the 2-dimensional discrete dynamical system

$$\mathbf{x}_{k+1} = A\mathbf{x}_k$$

where

$$A = \left(\begin{array}{rrr} 1.7 & 0.3\\ 1.2 & 0.8 \end{array}\right)$$

(a) (10 points) Is the origin an attractor, repeller, or saddle point?

SOLUTION:

Solution. The origin is a saddle point.

To see this, we compute that the characteristic polynomial is

$$p_A(t) = \det \begin{pmatrix} t - 1.7 & -0.3 \\ -1.2 & t - 0.8 \end{pmatrix} = (t^2 - 2.5t + 1.36) - (.36) = t^2 - 2.5t + 1$$
$$= (t - 2)(t - \frac{1}{2})$$

Thus the eigenvalues are $\lambda = \frac{1}{2}$, 2. Since $0 < \frac{1}{2} < 1$ and 1 < 2, we see that the origin is a saddle point.

(b) (10 points) Find the directions of greatest attraction or repulsion.

To deduce this, we find the eigenspaces. We start with the $\lambda = \frac{1}{2}$ -eigenspace, $E_{1/2}$, which is the

kernel of $\frac{1}{2}I - A$:

$$\frac{1}{2}I - A = \begin{pmatrix} -1.2 & -0.3 \\ -1.2 & -0.3 \end{pmatrix} \mapsto \begin{pmatrix} 12 & 3 \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1/4 \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1/4 \\ 0 & -1 \end{pmatrix}$$

Thus $\begin{pmatrix} 1 \\ -4 \end{pmatrix}$ is a basis for the $\frac{1}{2}$ -eigenspace $E_{1/2}$.

We now compute the $\lambda = 2$ -eigenspace, E_2 , which is the kernel of 2I - A:

$$2I - A = \begin{pmatrix} 0.3 & -0.3 \\ -1.2 & 1.2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$$

Thus $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is a basis for the 2-eigenspace E_2 .

In conclusion, the line spanned by $\begin{pmatrix} 1 \\ -4 \end{pmatrix}$ is the direction of greatest attraction, and the line spanned by $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the direction of greatest repulsion. \Box

4	
20 points	

5. • Consider the following real matrix

$$A = \left(\begin{array}{rrr} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{array} \right)$$

(a) (5 points) Find the characteristic polynomial $p_A(t)$ of A.

SOLUTION:

Solution. We have

$$p_A(t) = \begin{vmatrix} t-2 & 1 & -1 \\ 0 & t-3 & 1 \\ -2 & -1 & t-3 \end{vmatrix}$$
$$= (t-2)[(t-3)^2 - (1)(-1)] - (1)[0 - (1)(-2)] + (-1)[0 - (t-3)(-2)]$$
$$= (t-2)[t^2 - 6t + 10] - 2 + \underbrace{(t-3)(-2)}_{-2t+6}$$
$$= (t^3 - 6t^t + 10t - 2t^2 + 12t - 20) - 2 + (6 - 2t)$$
$$= t^3 - 8t^2 + 20t - 16.$$

In other words, the solution is:

$$p_A(t) = t^3 - 8t^2 + 20t - 16.$$

As a quick partial check of the solution, observe that

$$\operatorname{tr}(A) = 8$$
$$\operatorname{det} A = \begin{vmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 0 & 2 & 2 \end{vmatrix} = 2(6+2) = 16.$$

confirming the computation of the coefficients of t^2 and t^0 , since we know that

$$p_A(t) = t^3 - \operatorname{tr}(A)t^2 + \alpha t + (-1)^3 \operatorname{det}(A)$$

for some real number $\alpha \in \mathbb{R}$.

(b) (5 points) *Find the eigenvalues of A*.

SOLUTION:

Solution. One can easily check that

$$p_A(2) = 2^3 - 8 \cdot 2^2 + 20 \cdot 2 - 16 = 8 - 32 + 40 - 16 = 48 - 48 = 0.$$

Thus (t - 2) is a factor of $p_A(t)$, so that we have

$$p_A(t) = (t-2)(t^2-6t+8) = (t-2)(t-2)(t-4).$$

Thus the eigenvalues are

$$\lambda = 2, 4.$$

(c) (5 points) Find a basis for each eigenspace of A in \mathbb{R}^3 .

SOLUTION:

Solution. To find a basis for the $\lambda = 2$ eigenspace E_2 , we compute

$$E_{2} := \ker(2I - A) = \ker\begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ -2 & -1 & -1 \end{pmatrix}$$
$$= \ker\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} = \ker\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} = \ker\begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$= \ker\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

We add rows, and get the matrix

$$\left(\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{array}\right)$$

Thus we have

$$E_2 = \left\{ \alpha \left(\begin{array}{c} 1 \\ -1 \\ -1 \end{array} \right) : \alpha \in \mathbb{R} \right\}$$

Now we compute a basis for the $\lambda = 4$ eigenspace E_4 . We have

$$E_{4} = \ker \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ -2 & -1 & 1 \end{pmatrix} = \ker \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \ker \begin{pmatrix} 2 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$= \ker \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

This gives us the matrix

$$\left(\begin{array}{rrrr} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{array}\right)$$

Thus we have

$$E_4 = \left\{ \alpha \left(\begin{array}{c} -1 \\ 1 \\ -1 \end{array} \right) : \alpha \in \mathbb{R} \right\}$$

Thus the solution to the problem is:

is a basis for E_4 .

(d) (5 points) Is A diagonalizable? If so, find a matrix $S \in M_{3\times 3}(\mathbb{R})$ so that $S^{-1}AS$ is diagonal. If not, explain.

SOLUTION:

Solution. No. *A* is not diagonalizable since we showed in part (c) that there does not exists a basis of \mathbb{R}^3 consisting of eigenvectors for *A*.

5
20 points