Midterm 2

Linear Algebra: Matrix Methods
MATH 2130
Fall 2022
Friday October 28, 2022

UPLOAD THIS COVER SHEET!

NAME:
PRACTICE EXAM
SOLUTIONS
Question: 1 2 3 4 5 Total
Points: 20 20 20 20 20 100
Score:

The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and

pen, to complete this exam.
* You may not discuss the exam with anyone except me, in any way, under any circumstances.

* You must explain your answers, and you will be graded on the clarity of your solutions.

You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.

You have 45 minutes to complete the exam.



1. e Compute the determinant of each of the following matrices:

4 -1 1
(@ (I0points) A= —1 -2 0
0 10
SOLUTION:
Solution. We have| detA = —1 | The fastest way to see this may be to expand off of the third

column (or even to interchange two columns, twice); however, to use the standard method, we

have

det A = (4)[(=2)(0) = (0)(1))] = (=D[(=1)(0) = (0)(0)] + (VD [(-=1)(1) = (=2)(0)] = —1.

O
010 00 =
1 0 e —4 8 37°
(b) (10 points) B = 000 Lo 0
051 02 10
000 30 1
000 -1 2 0
SOLUTION:
Solution. We have| detB = —2 | We use row operations:
010 00 1 0 e —4 8 37° 1 0 e —4 8 37>
10 e —4 8 35 010 00 = 010 00 s
000 10 0:(_1)2051 02104:(_1)2001 0 2 10*—5m
051 02 10 000 10 0 000 10 0
000 30 1 000 30 1 000 30 1
000 -1 2 0 000 -1 2 0 000 -1 2 0
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2. (20 points) e Let V7 and V; be real vector spaces. On the product

Vix V= {(Vl,Vz) v eV, v € Vz},

define addition and scaling rules by

(vi,v2) + (w1, W2) = (V1 +wyq,vo +Wp)

A (Vl,Vz) = (/\'Vl,)\'Vz).

Show that these addition and scaling rules make V1 X V, into a real vector space.

SOLUTION:

Solution. For brevity of notation, I will write V = V; x V,.

1. (Group laws)

(a) (Additive identity) I claim there exists an element &' € V such thatforallve V, v+ 0 = v.
Indeed, set & = (04, 0,), where 01 € Vj is the additive identity for V; and &, € V; is the

additive identity for V. Then for any v = (vq,vp) € V =V, x V,, we have

v+ 0 = (V1/V2) + (ﬁll ﬁZ)

= (V1 + 01, va+ 0)) Def.of +inV
= (v1,v2) (1)(a) for V4 and V»
= V.

(b) (Additive inverse) I claim that for each v € V there exists an element —v € V such that
v+ (—v)=0.
Indeed, given v = (v1,vy) € V = Vj x V;, set —v = (—vy, —vy), where —v; € Vj is the

additive inverse of vi, and —v; € V; is the additive inverse of v,. Then

VA (=v) = (vi,v2) + (=v1, —V2)

= (vi+ (—v1),v2+ (—Vv2)) Def. of + in V
= (01, 07) (1)(b) for V; and V;
= 0.
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(c) (Associativity of addition) I claim that for all u,v,w € V,

(ut+v)+w=u+(v+w).

Indeed, given u = (uy,up), v = (vq,v2), w = (w1, wp) € V =

(u+v)+w=((u,u2) + (v, v2)) + (W, wp)
= (ug + vy, up 4+ vp) + (wq, wp)
= ((ug +vq) +wy, (uz +va2) +wa)

= (ug + (vi +wy),uz + (v2 +wa))

V1 x V,, we have

Def. of +inV
Def.of +inV

(1)(c) for V; and V;

= (ug,up) + (v1 +wq, vy + wp) Def. of +inV
= (ug,up) + ((vi,v2) + (w1, wp)) Def. of +in V
=u+ (v+w).
2. (Abelian property)
(@) (Commutativity of addition) For allu,v € V,
ut+v=v+u.
Indeed, given u = (uy,up), v = (v1,vy) € V.=V x V,, we have
u+v=(uy,uz)+ (v1,v2)

= (u; +v1,up + vy) Def.of +inV

= (vi+uy, vy +up) (2)(a) for V1 and V;

= (vq,v2) + (ug, up) Def.of +inV

=v+4u.

3. (Module conditions)

(a) Iclaim thatforall A € Kand allu,v € V,

A(ut+v)=(A-u)+ (A-v).
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Indeed, given A € Kand u = (uy,up), v=(vy,vp) € V =

A (u+v) =A-((ug, u2) + (vi,v2))
=A-(u; +vy,up+vy)
= (A (ug+v1),A- (a2 +v2))
=A-u+Aqv, A up+A-vy)
=(A-up,A-u)+ (Aqv,A-vo)
=A-(u,u1) +A- (v, v2)

=A-u)+(A-v)

(b) Iclaim thatforall A, u € K,and allv € V,

V1 x V,, we have

Def. of +in V

Def. of - in V

(3)(a) for V4 and V;
Def.of +inV

Def.of -inV

Atpu)-v=~A-v)+ (V)

Indeed, given A, i € Kand v = (v1,vy) € V =V x V,, we have

(A+p)-v=(A+p) (vi,v2)
=((A+p)-vi,(A+u)-v2)
= (A-vitpavi,A-vatp-va)
=(A-v,A-vo) + (v, 2 va)
= A-(vy,v2) 4+ - (v, v2)

= (Av)+ ().

(c) Forall A,y € K,andallveV,

(Au) - v=A-(p-v).
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Indeed, given A, i € Kand v = (v1,v2) € V =V x V,, we have

(Au) v = (Ap) - (v1,v2)
= ((Ap) - vi, (Ap) - v2)
=A-(pava), A (n-v2))
= A (Vi v2)

=A- (- (v, v2))

=A-(p-v)

(d) Iclaim thatforallv e V,

Indeed, given v = (v1,vp) € V = Vj x V,, we have

1-v=1-(vq,v2)

= (v1,v2)

V.
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(3)(c) for V1 and V,
Def.of -inV

Def.of -in V

Def.of -inV

(3)(d) for V; and V,
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3. (20 points) e Let {vy, vy, v3} and {wq, wy, w3} be bases for a real vector space V, and suppose that

vi = 4w, — w2 + wg
vy, = 3w; + 2wy, — WwWg
vy = 7wy + 23wy — 2ws

Find the change-of-coordinates matrix to go from the coordinates with respect to the basis {vq,vy,v3} to the

coordinates with respect to the basis {w1, wp, W3 }.

SOLUTION:

Solution. The change-of-coordinates matrix to go from the coordinates with respect to the basis {vy, v, v3}

to the coordinates with respect to the basis { w1, Wy, w3 }can be read off from the equations above as the

matrix
T
4 -1 1 4 3 7
3 2 -1 = —1 2 23
7 23 -2 1 -1 -2

20 points
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4. o Consider the 2-dimensional discrete dynamical system

X1 = AXg

where
1.7 0.3

1.2 08

(a) (10 points) Is the origin an attractor, repeller, or saddle point?

SOLUTION:

Solution. The originisa| saddle point.

To see this, we compute that the characteristic polynomial is

t—17 —03 ) )
pa(t) = det = (2 —25t+1.36) — (36) = 2 — 25t +1
~12 t-038

= (t-2)(t3)

Thus the eigenvalues are A = %,2. Since 0 < % < land 1 < 2, we see that the origin is a saddle

point. O

(b) (10 points) Find the directions of greatest attraction or repulsion.

SOLUTION:
1
Solution. We have that the line spanned by is the direction of greatest attraction, and
—4
1
the line spanned by is the direction of greatest repulsion.
1

To deduce this, we find the eigenspaces. We start with the A = 1-eigenspace, E; /o, which is the
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kernel of %I — A:

-1.2 —-03 12 3 1 1/4 1 1/4
-I-A= — —> —>
-1.2 -03 00 0 0 0 -1
1 . . 1 .
Thus A is a basis for the 5-eigenspace Eq /5.

We now compute the A = 2-eigenspace, E;, which is the kernel of 21 — A:

03 —-0.3 1 -1 1 -1
2l - A= — —
—-1.2 1.2 0 0 0 -1
1
Thus is a basis for the 2-eigenspace Ej.
1
1
In conclusion, the line spanned by is the direction of greatest attraction, and the line
—4
1
spanned by is the direction of greatest repulsion. O

20 points
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5. e Consider the following real matrix

(a) (5 points) Find the characteristic polynomial p 5 (t) of A.

SOLUTION:

Solution. We have

t—2 1 -1
pa(t) = 0 t-3 1
2 -1 t-3

= (t=2)[(t=3 = ()(-1)] = W)[0 — (D) (-2)] + (~=1)[0 — (t = 3)(~2)]

= (t—=2)[2 —6t+10] =2+ (t —3)(—2)
N———
—2t+6

= (£ —6t' +10t — 2t* + 12t — 20) — 2+ (6 — 2t)

= 3 — 82 4+ 20t — 16.

In other words, the solution is:

pa(t) =3 —8t2 420t — 16.

As a quick partial check of the solution, observe that

tr(A) =8
2 -1 1 2 -1 1

detA=]0 3 —-1|=|0 3 —1/[=2(6+2)=16.
2 1 3 0 2 2
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confirming the computation of the coefficients of t* and t, since we know that
pa(t) =12 —tr(A)? +at + (—1)> det(A)

for some real number « € R.

(b) (5 points) Find the eigenvalues of A.

SOLUTION:

Solution. One can easily check that
pa(2)=2>-8:224+20-2-16=8—-32+40—16 =48 — 48 = 0.
Thus (t — 2) is a factor of p4(t), so that we have
pa(t) = (t—2)(F> — 6t +8) = (t —2)(t —2)(t — 4).

Thus the eigenvalues are
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(c) (5 points) Find a basis for each eigenspace of A in R3.

SOLUTION:

Solution. To find a basis for the A = 2 eigenspace E;, we compute

= ker

Ej :=ker(2] — A) = ker

We add rows, and get the matrix

Thus we have

E4 = ker

0

2 1
=ker| 0 1

=ker| 0 1

=ker| 0

o

=ker| 0 1
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0 1 -1
0 -1 1
-2 -1 -1
1
-1 = ker
0
1
-1
0
x€R

20
01
00

01

2
-1
0



This gives us the matrix

1 0 -1
01 1
0 0 -1
Thus we have
-1
Es=1ua 1
-1

Thus the solution to the problem is:

The eigenspaces for A are E; and E4, and we have that

is a basis for E4.
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(d) (5points) Is A diagonalizable? If so, find a matrix S € Msy3(R) so that S~LAS is diagonal. If not,

explain.

SOLUTION:

Solution. | No. | A is not diagonalizable since we showed in part (c) that there does not exists a

basis of R? consisting of eigenvectors for A. O

20 points
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