Midterm 1

Linear Algebra: Matrix Methods
MATH 2130

Fall 2022
Friday September 23, 2022

NAME: \qquad

PRACTICE EXAM SOLUTIONS

| Question: | $[1$ | 2 | 3 | 4 | 5 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Points: | 20 | 10 | 30 | 20 | 20 | 100 |
| Score: | | | | | | |

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam.

1. (20 points) • Find all solutions to the following system of linear equations:

$$
\begin{array}{rr}
3 x_{1}+9 x_{2}+27 x_{3}= & -3 \\
-3 x_{1}-11 x_{2}-35 x_{3}= & 5 \\
2 x_{1}+8 x_{2}+26 x_{3}= & -4
\end{array}
$$

SOLUTION:

Solution. The solutions to the system of linear equations are:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in\left\{\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]: t \in \mathbb{R}\right\}
$$

or equivalently (substituting $t=-x_{3}$): x_{3} is free, $x_{2}=-4 x_{3}-1$, and $x_{1}=3 x_{3}+2$.
To find this, we row reduce the associated augmented matrix

$$
\begin{aligned}
& \begin{array}{l}
{\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]} \\
R_{1}^{\prime}=\frac{1}{3} R_{1}\left[\begin{array}{rrr|r}
1 & 3 & 9 & -1 \\
-3 & -11 & -35 & 5 \\
1 & 4 & 13 & -2
\end{array}\right]
\end{array} \\
& \begin{array}{r}
R_{2}^{\prime}=3 R_{1}+R_{2} \\
R_{3}^{\prime}=-R_{1}+R_{3}
\end{array}\left[\begin{array}{rrr|r}
1 & 3 & 9 & -1 \\
0 & -2 & -8 & 2 \\
0 & 1 & 4 & -1
\end{array}\right]
\end{aligned}
$$

Now we modify the RREF:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Thus the solutions to the system of equations are:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in\left\{\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]: t \in \mathbb{R}\right\}
$$

as claimed.

1
20 points

Page 2 of 8
2. (10 points) •Consider the linear map ("transformation") $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
L\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}-x_{3}, 3 x_{2}+x_{3}\right) .
$$

Write down the matrix form of ("standard matrix for") the linear map L.

SOLUTION:

Solution. The matrix form of L is

$$
\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 3 & 1
\end{array}\right]
$$

We find this by computing L on the standard basis elements:

$$
\begin{aligned}
& L\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
2 \cdot 1-0 \\
3 \cdot 0+0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
& L\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
2 \cdot 0-0 \\
3 \cdot(1)+0
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \\
& L\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
2 \cdot 0-1 \\
3 \cdot 0+1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

These give the corresponding columns of the matrix form of L.
3. - Consider the following matrix A and its corresponding Reduced Row Echelon Form matrix $\operatorname{RREF}(A)$:

$$
A=\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 4 & -2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
3 & -9 & 0 & -3 & 2 & 4 \\
1 & -3 & 1 & -2 & 4 & -1
\end{array}\right] \quad \operatorname{RREF}(A)=\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 0 & 2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (3 points) Are the rows of A linearly independent?

SOLUTION:
Solution. No, there is a zero row in $\operatorname{RREF}(A)$.
(b) (3 points) Are the columns of A linearly independent?

SOLUTION:
Solution. No, there are columns in $\operatorname{RREF}(A)$ that do not have a pivot.
(c) (3 points) What is the row rank of A ?

SOLUTION:
Solution. The row rank of A is 3 . Indeed, there are 3 non-zero rows in $\operatorname{RREF}(A)$.
(d) (3 points) What is the column rank of A ?

SOLUTION:

Solution. The column rank of A is 3. Indeed, the row rank and column rank of a matrix are the same.
(e) (6 points) Find a basis for the row space of A.

SOLUTION:

Solution. A basis for the row space of A is given by the non-zero rows of $\operatorname{RREF}(A)$. In other words, a basis for the row space of A is given by

$$
\left[\begin{array}{r}
1 \\
-3 \\
0 \\
-1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{r}
0 \\
0 \\
1 \\
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
0 \\
0 \\
0 \\
0 \\
1 \\
-1
\end{array}\right]
$$

(f) (6 points) Find a basis for the column space of A.

SOLUTION:

Solution. A basis for the column space of A is given by the columns of A that correspond to the columns in $\operatorname{RREF}(A)$ that have a pivot. In other words, a basis for the column space of A is:

$$
\left[\begin{array}{l}
1 \\
0 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
4 \\
0 \\
2 \\
4
\end{array}\right] .
$$

(g) (6 points) Find a basis for the space of solutions of the matrix equation $A \mathbf{x}=\mathbf{0}$.

SOLUTION:

Solution. The modified matrix is

$$
\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 0 & 2 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]
$$

so a basis for the set of solutions to the matrix equation $A \mathbf{x}=\mathbf{0}$ is

$$
\left[\begin{array}{r}
-3 \\
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
-1 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
2 \\
0 \\
1 \\
0 \\
-1 \\
-1
\end{array}\right] .
$$

4. - Consider the matrix

$$
B=\left[\begin{array}{ccc}
1 & 2 & 0 \\
3 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) (10 points) Find the inverse of B.

SOLUTION:

Solution. The solution is

$$
B^{-1}=\left[\begin{array}{rrr}
-1 & 0 & 2 \\
1 & 0 & -1 \\
-3 & -1 & 6
\end{array}\right]
$$

To do this, we consider the augmented matrix $\left[\begin{array}{l|l}B & I\end{array}\right]$, and do row reduction until we arrive at the matrix $\left[I \mid B^{-1}\right]$. In more detail:

$$
\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & -1 & 3 & 1 & -6
\end{array}\right]
$$

$$
\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
3 & 0 & -1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 & 0 & 2 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & -3 & -1 & 6
\end{array}\right]
$$

The matrix on the right is the matrix B^{-1}.
(b) (10 points) Does there exist $\mathbf{x} \in \mathbb{R}^{3}$ such that $B \mathbf{x}=\left[\begin{array}{r}5 \\ \sqrt{2} \\ \pi\end{array}\right]$?

SOLUTION:

Solution. YES. Since B is invertible, given any $\mathbf{b} \in \mathbb{R}^{3}$, we have that $B\left(B^{-1} \mathbf{b}\right)=\mathbf{b}$. In particular, for $\mathbf{b}=\left[\begin{array}{r}5 \\ \sqrt{2} \\ \pi\end{array}\right]$, we have that $\mathbf{x}=B^{-1}\left[\begin{array}{r}5 \\ \sqrt{2} \\ \pi\end{array}\right]$ satisfies $B \mathbf{x}=\left[\begin{array}{r}5 \\ \sqrt{2} \\ \pi\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -6 & -1 & -3 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & -6 & -1 & -3 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

5. (20 points)

- The equation

$$
\mathbf{x}=C \mathbf{x}+\mathbf{d}
$$

(the Leontief Production Equation) arises in the Leontief Input-Output Model. Here $\mathbf{x}, \mathbf{d} \in M_{n \times 1}(\mathbb{R})$ are column vectors and $C \in M_{n \times n}(\mathbb{R})$ is a square matrix. Consider also the equation $\mathbf{p}=C^{T} \mathbf{p}+\mathbf{v}$ (called the Price Equation), where $\mathbf{p}, \mathbf{v} \in M_{n \times 1}(\mathbb{R})$ are column vectors.

Show that

$$
\mathbf{p}^{T} \mathbf{d}=\mathbf{v}^{T} \mathbf{x}
$$

(This quantity is known as GDP.) [Hint: Compute $\mathbf{p}^{T} \mathbf{x}$ in two ways.]

SOLUTION:

Solution. We are given the equations

$$
\begin{aligned}
& \mathbf{x}=C \mathbf{x}+\mathbf{d} \\
& \mathbf{p}=C^{T} \mathbf{p}+\mathbf{v}
\end{aligned}
$$

Applying \mathbf{p}^{T} to both sides of the first equation (the Leontief Production Equation) we have

$$
\begin{aligned}
\mathbf{p}^{T} \mathbf{x} & =\mathbf{p}^{T}(C \mathbf{x}+\mathbf{d}) \\
& =\mathbf{p}^{T} C \mathbf{x}+\mathbf{p}^{T} \mathbf{d}
\end{aligned}
$$

Now, the transpose of the second equation $\mathbf{p}=$ $C^{T} \mathbf{p}+\mathbf{v}$ (the Price Equation), is $\mathbf{p}^{T}=\mathbf{p}^{T} C+\mathbf{v}^{T}$,
so that applying \mathbf{x} to both sides gives

$$
\begin{aligned}
\mathbf{p}^{T} \mathbf{x} & =\left(\mathbf{p}^{T} C+\mathbf{v}^{T}\right) \mathbf{x} \\
& =\mathbf{p}^{T} C \mathbf{x}+\mathbf{v}^{T} \mathbf{x}
\end{aligned}
$$

Putting the two expressions for $\mathbf{p}^{T} \mathbf{x}$ together, we have

$$
\mathbf{p}^{T} C \mathbf{x}+\mathbf{p}^{T} \mathbf{d}=\mathbf{p}^{T} C \mathbf{x}+\mathbf{v}^{T} \mathbf{x}
$$

Subtracting $\mathbf{p}^{T} C \mathbf{x}$ from both sides, we arrive at

$$
\mathbf{p}^{T} \mathbf{d}=\mathbf{v}^{T} \mathbf{x}
$$

completing the proof.

