Midterm 1

Linear Algebra: Matrix Methods

MATH 2130
Fall 2022
Friday September 23, 2022

NAME: \qquad

PRACTICE EXAM

| Question: | $\mathbf{1}$ | 2 | $[3$ | 4 | $[5$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Points: | 20 | 10 | 30 | 20 | 20 | 100 |
| Score: | | | | | | |

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam.

1. (20 points) - Find all solutions to the following system of linear equations:

$$
\begin{aligned}
3 x_{1}+9 x_{2}+27 x_{3} & =-3 \\
-3 x_{1}-11 x_{2}-35 x_{3} & =5 \\
2 x_{1}+8 x_{2}+26 x_{3} & =-4
\end{aligned}
$$

1
20 points

2. (10 points) • Consider the linear map ("transformation") $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
L\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}-x_{3}, 3 x_{2}+x_{3}\right) .
$$

Write down the matrix form of ("standard matrix for") the linear map L.
3. - Consider the following matrix A and its corresponding Reduced Row Echelon Form matrix RREF (A) :

$$
A=\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 4 & -2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
3 & -9 & 0 & -3 & 2 & 4 \\
1 & -3 & 1 & -2 & 4 & -1
\end{array}\right] \quad \operatorname{RREF}(A)=\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 0 & 2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (3 points) Are the rows of A linearly independent?
(b) (3 points) Are the columns of A linearly independent?
(c) (3 points) What is the row rank of A ?
(d) (3 points) What is the column rank of A ?
(e) (6 points) Find a basis for the row space of A.
(f) (6 points) Find a basis for the column space of A.
(g) (6 points) Find a basis for the space of solutions of the matrix equation $A \mathbf{x}=\mathbf{0}$.
4. - Consider the matrix

$$
B=\left[\begin{array}{ccc}
1 & 2 & 0 \\
3 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) (10 points) Find the inverse of B.
(b) (10 points) Does there exist $\mathbf{x} \in \mathbb{R}^{3}$ such that $B \mathbf{x}=\left[\begin{array}{r}5 \\ \sqrt{2} \\ \pi\end{array}\right]$?
5. (20 points) • The equation

$$
\mathbf{x}=C \mathbf{x}+\mathbf{d}
$$

(the Leontief Production Equation) arises in the Leontief Input-Output Model. Here $\mathbf{x}, \mathbf{d} \in M_{n \times 1}(\mathbb{R})$ are column vectors and $C \in M_{n \times n}(\mathbb{R})$ is a square matrix. Consider also the equation $\mathbf{p}=C^{T} \mathbf{p}+\mathbf{v}$ (called the Price Equation), where $\mathbf{p}, \mathbf{v} \in M_{n \times 1}(\mathbb{R})$ are column vectors.

Show that

$$
\mathbf{p}^{T} \mathbf{d}=\mathbf{v}^{T} \mathbf{x}
$$

(This quantity is known as GDP.) [Hint: Compute $\mathbf{p}^{T} \mathbf{x}$ in two ways.]

