Final Exam

Linear Algebra: Matrix Methods

MATH 2130

Fall 2022
Sunday December 11, 2022
UPLOAD THIS COVER SHEET!

NAME: \qquad

PRACTICE EXAM

| Question: | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $[\mathbf{4}$ | | 5 | 6 | 7 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 140 | |
| Score: | | | | | | | | | |

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 70 minutes to complete the exam.

1. $(20$ points $) \bullet$ Let $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{x}_{4}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right]$.

Use the Gram-Schmidt process to find an orthonormal basis for the vector subspace of \mathbb{R}^{4} spanned by the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$, and \mathbf{x}_{4}.
2. (20 points) - Let \mathbb{P}_{3} be the real vector space of polynomials of degree at most 3 (my notation for this vector space has been $\mathbb{R}[t]_{3}$, but here I am using the textbook's notation). A basis of \mathbb{P}_{3} is given by the polynomials $1, t, t^{2}, t^{3}$.

We have seen that there is an inner product on \mathbb{P}_{3} given by evaluation at $-2,-1,1$, and 2 . In other words, given polynomials $p(t), q(t) \in \mathbb{P}_{3}$, we define the inner product by the rule

$$
\begin{aligned}
(p(t), q(t)) & :=(p(-2), p(-1), p(1), p(2)) \cdot(q(-2), q(-1), q(1), q(2)) \\
& =p(-2) q(-2)+p(-1) q(-1)+p(1) q(1)+p(2) q(2) .
\end{aligned}
$$

Let $p_{1}(t)=t$, and $p_{2}(t)=t^{2}$.
Find the best approximation to $p(t)=t^{3}$ by the polynomials in $\operatorname{Span}\left\{p_{1}(t), p_{2}(t)\right\}$.
In other words, find the polynomial $q(t)$ in the span of $p_{1}(t)$ and $p_{2}(t)$, that is closest to the polynomial $p(t)$ with respect to the given inner product on \mathbb{P}_{3}.
3. (20 points) • Find the equation $y=\beta_{0}+\beta_{1} x$ of the line that best fits the given data points, as a least squares model:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]:\left[\begin{array}{r}
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

4. \bullet Consider the following real matrix

$$
A=\left(\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right)
$$

(a) (4 points) Find the characteristic polynomial $p_{A}(t)$ of A.
(b) (4 points) Find the eigenvalues of A.
(c) (4 points) Find a basis for each eigenspace of A in \mathbb{R}^{3}.
(d) (4 points) Is A diagonalizable? If so, find a matrix $S \in M_{3 \times 3}(\mathbb{R})$ so that $S^{-1} A S$ is diagonal. If not, explain.
(e) (4 points) Is A diagonalizable with orthogonal matrices? If so, find an orthogonal matrix $U \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ so that $U^{T} A U$ is diagonal. If not, explain.
5. (20 points) • Maximize the quadratic form

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}-2 x_{1} x_{2}+2 x_{1} x_{3}+5 x_{2}^{2}-2 x_{2} x_{3}+3 x_{3}^{2}
$$

subject to the constraint that $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$. [Hint: Compare to the matrix in Problem 3.]
6. (20 points) • Find a singular value decomposition (SVD) of the matrix $A=\left[\begin{array}{rr}3 & 2 \\ 2 & 3 \\ 2 & -2\end{array}\right]$.
7. - TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
(a) (2 points) TRUE or FALSE (circle one). If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, then $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
(b) (2 points) TRUE or FALSE (circle one). Two vectors in \mathbb{R}^{n} are orthogonal if their dot product is zero.
(c) (2 points) TRUE or FALSE (circle one). If $W \subseteq \mathbb{R}^{n}$ is a vector subspace and W^{\perp} is the orthogonal complement, then $W \subseteq W^{\perp}$.
(d) (2 points) TRUE or FALSE (circle one). If $A \in \mathrm{M}_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^{m}$, then a least squares solution to the equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
(e) (2 points) TRUE or FALSE (circle one). For the real vector space $C^{0}([0,1])$ consisting of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ on the closed interval $[0,1]$, the rule

$$
(f(t), g(t))=\int_{0}^{1} f(t) g(t) d t
$$

defines an inner product on $C^{0}([0,1])$.
(f) (2 points) TRUE or FALSE (circle one). If A is any real matrix, then the matrix $A^{T} A$ has non-negative eigenvalues.
(g) (2 points) TRUE or FALSE (circle one). Every real square matrix is diagonalizable with orthogonal matrices.
(h) (2 points) TRUE or FALSE (circle one). Given symmetric matrices A and B of the same size, then $A B$ is a symmetric matrix.
(i) (2 points) TRUE or FALSE (circle one). Every quadratic form has a maximum value.
(j) (2 points) TRUE or FALSE (circle one). Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. Then the angle θ between \mathbf{x} and \mathbf{y} satisfies $\cos \theta=\frac{\mathbf{x . y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$.

