Final Exam

Linear Algebra: Matrix Methods MATH 2130 Fall 2022

Sunday December 11, 2022

UPLOAD THIS COVER SHEET!

N T			
NAME:			

PRACTICE EXAM

Question:	1	2	3	4	5	6	7	Total
Points:	20	20	20	20	20	20	20	140
Score:								

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 70 minutes to complete the exam.

1. (20 points) • Let
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{x}_4 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$.

Use the Gram–Schmidt process to find an orthonormal basis for the vector subspace of \mathbb{R}^4 spanned by the vectors \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , and \mathbf{x}_4 .

2. (20 points) • Let \mathbb{P}_3 be the real vector space of polynomials of degree at most 3 (my notation for this vector space has been $\mathbb{R}[t]_3$, but here I am using the textbook's notation). A basis of \mathbb{P}_3 is given by the polynomials $1, t, t^2, t^3$.

We have seen that there is an inner product on \mathbb{P}_3 given by evaluation at -2, -1, 1, and 2. In other words, given polynomials p(t), $q(t) \in \mathbb{P}_3$, we define the inner product by the rule

$$(p(t),q(t)) := (p(-2),p(-1),p(1),p(2)).(q(-2),q(-1),q(1),q(2))$$
$$= p(-2)q(-2) + p(-1)q(-1) + p(1)q(1) + p(2)q(2).$$

Let
$$p_1(t) = t$$
, and $p_2(t) = t^2$.

Find the best approximation to $p(t) = t^3$ by the polynomials in $Span\{p_1(t), p_2(t)\}$.

In other words, find the polynomial q(t) in the span of $p_1(t)$ and $p_2(t)$, that is closest to the polynomial p(t) with respect to the given inner product on \mathbb{P}_3 .

3. (20 points) • Find the equation $y = \beta_0 + \beta_1 x$ of the line that best fits the given data points, as a least squares model:

$$\left[\begin{array}{c} x \\ y \end{array}\right]: \quad \left[\begin{array}{c} -1 \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 1 \end{array}\right], \left[\begin{array}{c} 1 \\ 2 \end{array}\right], \left[\begin{array}{c} 2 \\ 1 \end{array}\right]$$

4. • Consider the following real matrix

$$A = \left(\begin{array}{rrr} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{array}\right)$$

(a) (4 points) Find the characteristic polynomial $p_A(t)$ of A.

(b)	(4 points)	Find the eigenvalues of A.
<i>(</i>)	(4	E. 1 1 . C 1
(c)	(4 points)	Find a basis for each eigenspace of A in \mathbb{R}^3 .

1 points) Is A diagonalizable?	If so, find a matrix $S \in$	$M_{3\times 3}(\mathbb{R})$ so that $S^{-1}AS$ is diagonal.	If not,
·, · · · · · · · · · · · · · · · · · ·			
		If so, find an orthogonal matrix $U \in M_3$	$\times 3(\mathbb{R})$
I points) Is A diagonalizable u that U^TAU is diagonal. If not		If so, find an orthogonal matrix $U\in M_3$	$_{ imes 3}(\mathbb{R})$
		If so, find an orthogonal matrix $U\in M_3$	$ imes_3(\mathbb{R})$
		If so, find an orthogonal matrix $U\in \mathrm{M}_3$	$_{ imes 3}(\mathbb{R})$
		If so, find an orthogonal matrix $U\in M_3$	$_{ imes 3}(\mathbb{R})$
		If so, find an orthogonal matrix $U\in M_3$	$_{ imes 3}(\mathbb{R})$
		If so, find an orthogonal matrix $U\in M_3$	$_{ imes 3}(\mathbb{R})$

5. (20 points) • *Maximize the quadratic form*

$$Q(x_1, x_2, x_3) = 3x_1^2 - 2x_1x_2 + 2x_1x_3 + 5x_2^2 - 2x_2x_3 + 3x_3^2$$

subject to the constraint that $x_1^2 + x_2^2 + x_3^2 = 1$. [*Hint:* Compare to the matrix in Problem 3.]

6. (20 points) • Find a singular value decomposition (SVD) of the matrix $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$.

- 7. TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
 - (a) (2 points) **TRUE** or **FALSE** (circle one). If $x, y \in \mathbb{R}^n$, then $|x,y| \le ||x|| ||y||$.
 - (b) (2 points) **TRUE** or **FALSE** (circle one). Two vectors in \mathbb{R}^n are orthogonal if their dot product is zero.
 - (c) (2 points) **TRUE** or **FALSE** (circle one). If $W \subseteq \mathbb{R}^n$ is a vector subspace and W^{\perp} is the orthogonal complement, then $W \subseteq W^{\perp}$.
 - (d) (2 points) **TRUE** or **FALSE** (circle one). If $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$, then a least squares solution to the equation $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.
 - (e) (2 points) **TRUE** or **FALSE** (circle one). For the real vector space $C^0([0,1])$ consisting of continuous functions $f:[0,1] \to \mathbb{R}$ on the closed interval [0,1], the rule

$$(f(t),g(t)) = \int_0^1 f(t)g(t) dt$$

defines an inner product on $C^0([0,1])$.

- (f) (2 points) **TRUE** or **FALSE** (circle one). If A is any real matrix, then the matrix $A^{T}A$ has non-negative eigenvalues.
- (g) (2 points) **TRUE** or **FALSE** (circle one). Every real square matrix is diagonalizable with orthogonal matrices.
- (h) (2 points) **TRUE** or **FALSE** (circle one). *Given symmetric matrices A and B of the same size, then AB is a symmetric matrix.*
- (i) (2 points) TRUE or FALSE (circle one). Every quadratic form has a maximum value.
- (j) (2 points) **TRUE** or **FALSE** (circle one). Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then the angle θ between \mathbf{x} and \mathbf{y} satisfies $\cos \theta = \frac{\mathbf{x}.\mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$.