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Introduction

The Reduced Row Echelon Form (RREF) of a given matrix is a
special matrix obtained from the original matrix by taking linear
combinations of the rows.
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Introduction

The Reduced Row Echelon Form (RREF) of a given matrix is a
special matrix obtained from the original matrix by taking linear
combinations of the rows.

Putting a matrix in Reduced Row Echelon Form will be the main
computational tool we will use in this class.
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Definition (Reduced Row Echelon Form (RREF))
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» All nonzero rows (rows with at least one nonzero element) are
above any rows of all zeroes (i.e., all zero rows, if any, belong
at the bottom of the matrix).
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Definition (Reduced Row Echelon Form (RREF))

A matrix is in Reduced Row Echelon Form (RREF) if the following
hold:

» All nonzero rows (rows with at least one nonzero element) are
above any rows of all zeroes (i.e., all zero rows, if any, belong
at the bottom of the matrix).

» The leading coefficient (the first nonzero number from the
left, also called the pivot) of a nonzero row is always strictly
to the right of the leading coefficient of the row above it.
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» The leading coefficient (the first nonzero number from the
left, also called the pivot) of a nonzero row is always strictly
to the right of the leading coefficient of the row above it.

> Every leading coefficient is 1 and is the only nonzero entry in
its column.
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> Every leading coefficient is 1 and is the only nonzero entry in
its column.
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Figure: A matrix in reduced row echelon form
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Definition (Elementary Row Operations)

Let A and B be matrices of the same size. We say that B is
obtained from A by an elementary row operation if one of the

following hold:
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Definition (Elementary Row Operations)

Let A and B be matrices of the same size. We say that B is
obtained from A by an elementary row operation if one of the

following hold:
» B is obtained from A by interchanging two rows;
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Definition (Elementary Row Operations)

Let A and B be matrices of the same size. We say that B is
obtained from A by an elementary row operation if one of the

following hold:
» B is obtained from A by interchanging two rows;

» B is obtained from A by multiplying a row of A by a nonzero
scalar;
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Definition (Elementary Row Operations)
Let A and B be matrices of the same size. We say that B is
obtained from A by an elementary row operation if one of the
following hold:
» B is obtained from A by interchanging two rows;
» B is obtained from A by multiplying a row of A by a nonzero
scalar;
» B is obtained from A by adding a scalar multiple of one row
of A to another.
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Elementary Row Operations

Definition (Elementary Row Operations)
Let A and B be matrices of the same size. We say that B is
obtained from A by an elementary row operation if one of the
following hold:
» B is obtained from A by interchanging two rows;
» B is obtained from A by multiplying a row of A by a nonzero
scalar;
» B is obtained from A by adding a scalar multiple of one row
of A to another.
We say that B is obtained from A by elementary row operations if
there is a finite sequence of matrices A = Ag, A1,..., A, =B,
with A;;1 obtained from A;, i =1,...,n—1, by an elementary
row operation.
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Example of Theorem

Example (Elementary Row Operations)

39 27 -3
3 11 35 5| A=A
2 8 26 -4
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Example (Elementary Row Operations)

3 9 27
-3 —-11 -35
2 8 26
1 3 9
-3 —-11 =35
2 8 26

-3
5
—4

—1 7

5
—4
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Definition of RREF

. Elementary Row Operations
Example (Elementary Row Operations)

Example of Theorem

3 9 27 -3
3 S11 -35 5| A=A
2 8 26 —4
Ri=3Rv [ 1 3 9 -1
-3 —11 =35 5 Aq
2 8 26 —4
1 3 9 -1
Ré =R;+ R -1 -3 -9 1 A, =B
2 8 26 —4
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Theorem

Given a matrix A, there is a unique matrix RREF (A) that is in
Reduced Row Echelon Form that can be obtained from A by
elementary row operations.
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Theorem

Given a matrix A, there is a unique matrix RREF (A) that is in
Reduced Row Echelon Form that can be obtained from A by
elementary row operations.

Proof.

8/13



Main Theorem

S. Casalaina

Main Theorem

Theorem

Given a matrix A, there is a unique matrix RREF (A) that is in
Reduced Row Echelon Form that can be obtained from A by
elementary row operations.

Proof.

Exercise. O
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Example (Putting a matrix in RREF)

3 9 27 -3
-3 —-11 -35 5
2 8 26 —4
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Example of Theorem

Example (Putting a matrix in RREF)

3 9 27 -3
-3 —11 -35 5
2 8 26 —4
Ri=1irR [ 1 3 9 —1]
-3 —-11 -35 5
Ro=1%Ry | 1 4 13 -2
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Example (Putting a matrix in RREF)

Example of Theorem

3 9 27 -3
-3 -11 =35 5
2 8 26 —4

-3 —-11 -35 5
Ry =IRs 1 4 13 =2

1 9 -1

R,=3Ri+R, |0 -2 -8 2
0 4 -1

w

[y
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Example (Putting a matrix in RREF)

Example of Theorem

3 9 27 -3
-3 -11 -35 5§
2 8 26 —4
R =1Ry 1 3 9 -1
-3 —-11 -35 5
Ry = 1R 1 4 13 -2

1 3 9 -1
R,=3Ri+R, | 0 —2 -8 2
Ri=—Ri+Ry |0 1 4 -1
(1 3 9 -1
Ry =Rs; 01 4 -1
R, = R RY=2R,+R, |0 0 0 0
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Example (Putting a matrix in RREF)

3 9 27 -3 Example of Theorem
-3 —-11 -35 5

2 8 26 —4
Ri=iR [ 1 3 9 —1]
-3 —-11 -35 5
Ry =3Rs 1 4 13 -2

1 3 9 -1
Ry=3Ri+R, | 0 —2 —8 2
Ri=-Ri+Ry |0 1 4 -1
(1 3 9 -1
Ry =Rs — 01 4 -1
R, = R} RY=2R,+R; |0 0 0 0
RI=R,—3R, [1 0 -3 2
01 4 -1
00 0 O
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