S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem Example of Theorem

Reduced row echelon form of a matrix

Sebastian Casalaina

August 13, 2022

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem Example of Theorem

The Reduced Row Echelon Form (RREF) of a given matrix is a special matrix obtained from the original matrix by taking linear combinations of the rows.

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem Example of Theorem

The Reduced Row Echelon Form (RREF) of a given matrix is a special matrix obtained from the original matrix by taking linear combinations of the rows.

Putting a matrix in Reduced Row Echelon Form will be the main computational tool we will use in this class.

Introduction Definition (Reduced Row Echelon Form (RREF))

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Definition (Reduced Row Echelon Form (RREF))

A matrix is in *Reduced Row Echelon Form (RREF)* if the following hold:

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Definition (Reduced Row Echelon Form (RREF))

A matrix is in *Reduced Row Echelon Form (RREF)* if the following hold:

All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (i.e., all zero rows, if any, belong at the bottom of the matrix).

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Definition (Reduced Row Echelon Form (RREF))

A matrix is in *Reduced Row Echelon Form (RREF)* if the following hold:

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (i.e., all zero rows, if any, belong at the bottom of the matrix).
- The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Definition (Reduced Row Echelon Form (RREF))

A matrix is in *Reduced Row Echelon Form (RREF)* if the following hold:

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (i.e., all zero rows, if any, belong at the bottom of the matrix).
- The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.
- Every leading coefficient is 1 and is the only nonzero entry in its column.

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Definition (Reduced Row Echelon Form (RREF))

A matrix is in *Reduced Row Echelon Form (RREF)* if the following hold:

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (i.e., all zero rows, if any, belong at the bottom of the matrix).
- The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.
- Every leading coefficient is 1 and is the only nonzero entry in its column.

Figure: A matrix in reduced row echelon form

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Definition (Elementary Row Operations)

Introduction Definition of RREF Elementary Row Operations

Definition (Elementary Row Operations)

Let A and B be matrices of the same size. We say that B is obtained from A by an elementary row operation if one of the following hold:

S. Casalaina

Introduction Definition of RREF Elementary Row Operations

Definition (Elementary Row Operations)

Let A and B be matrices of the same size. We say that B is obtained from A by an elementary row operation if one of the following hold:

▶ *B* is obtained from *A* by interchanging two rows;

S. Casalaina

Introduction Definition of RREF Elementary Row Operations

Definition (Elementary Row Operations)

Let A and B be matrices of the same size. We say that B is obtained from A by an elementary row operation if one of the following hold:

- B is obtained from A by interchanging two rows;
- B is obtained from A by multiplying a row of A by a nonzero scalar;

S. Casalaina

Introduction Definition of RREF Elementary Row Operations

Definition (Elementary Row Operations)

Let A and B be matrices of the same size. We say that B is obtained from A by an elementary row operation if one of the following hold:

- B is obtained from A by interchanging two rows;
- B is obtained from A by multiplying a row of A by a nonzero scalar;
- B is obtained from A by adding a scalar multiple of one row of A to another.

S. Casalaina

Introduction Definition of RREF Elementary Row Operations

Definition (Elementary Row Operations)

Let A and B be matrices of the same size. We say that B is obtained from A by an elementary row operation if one of the following hold:

- B is obtained from A by interchanging two rows;
- B is obtained from A by multiplying a row of A by a nonzero scalar;
- B is obtained from A by adding a scalar multiple of one row of A to another.

We say that *B* is obtained from *A* by elementary row operations if there is a finite sequence of matrices $A = A_0, A_1, \ldots, A_n = B$, with A_{i+1} obtained from A_i , $i = 1, \ldots, n-1$, by an elementary row operation.

S. Casalaina

Introduction Definition of RREF Elementary Row Operations

Example (Elementary Row Operations)

$$\begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix} A = A_0$$

S. Casalaina

Introduction Definition of RREF Elementary Row Operations

Example (Elementary Row Operations)

$$R_{1}' = \frac{1}{3}R_{1} \begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix} A = A_{0}$$

$$R_{1}' = \frac{1}{3}R_{1} \begin{bmatrix} 1 & 3 & 9 & -1 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix} A_{1}$$

S. Casalaina

Introduction Definition of RREF Elementary Row Operations

Example (Elementary Row Operations)

$$R_{1}' = \frac{1}{3}R_{1} \begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix} A = A_{0}$$

$$R_{1}' = \frac{1}{3}R_{1} \begin{bmatrix} 1 & 3 & 9 & -1 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix} A_{1}$$

$$R_{2}' = R_{3} + R_{2} \begin{bmatrix} 1 & 3 & 9 & -1 \\ -1 & -3 & -9 & 1 \\ 2 & 8 & 26 & -4 \end{bmatrix} A_{2} = B$$

S. Casalaina

Introduction Definition of RREF Elementary Row Operations

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem Example of Theorem

Theorem

Given a matrix A, there is a unique matrix RREF(A) that is in Reduced Row Echelon Form that can be obtained from A by elementary row operations.

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem Example of Theorem

Theorem

Given a matrix A, there is a unique matrix RREF(A) that is in Reduced Row Echelon Form that can be obtained from A by elementary row operations.

Proof.

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem Example of Theorem

Theorem

Given a matrix A, there is a unique matrix RREF(A) that is in Reduced Row Echelon Form that can be obtained from A by elementary row operations.

Proof.

Exercise.

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

lain Theorem

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

lain Theorem

Example of Theorem

Example (Putting a matrix in RREF)

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

lain Theorem

Example of Theorem

Example (Putting a matrix in RREF)

$$\begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix}$$

Example (Putting a matrix in RREF)

$$\begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix}$$
$$R'_{1} = \frac{1}{3}R_{1} \begin{bmatrix} 1 & 3 & 9 & -1 \\ -3 & -11 & -35 & 5 \\ 1 & 4 & 13 & -2 \end{bmatrix}$$

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem

Example (Putting a matrix in RREF)

$$\begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix}$$
$$R'_{1} = \frac{1}{3}R_{1} \begin{bmatrix} 1 & 3 & 9 & -1 \\ -3 & -11 & -35 & 5 \\ 1 & 4 & 13 & -2 \end{bmatrix}$$
$$R'_{2} = 3R_{1} + R_{2}$$
$$\begin{bmatrix} 1 & 3 & 9 & -1 \\ 0 & -2 & -8 & 2 \\ 0 & 1 & 4 & -1 \end{bmatrix}$$

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem

Example (Putting a matrix in RREF)

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem

$$\begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix}$$
$$R'_{1} = \frac{1}{3}R_{1} \begin{bmatrix} 1 & 3 & 9 & -1 \\ -3 & -11 & -35 & 5 \\ 1 & 4 & 13 & -2 \end{bmatrix}$$
$$R'_{2} = 3R_{1} + R_{2} \\R'_{3} = -R_{1} + R_{3} \begin{bmatrix} 1 & 3 & 9 & -1 \\ 0 & -2 & -8 & 2 \\ 0 & 1 & 4 & -1 \end{bmatrix}$$
$$R'_{2} = R_{3} \mapsto \begin{bmatrix} 1 & 3 & 9 & -1 \\ 0 & -2 & -8 & 2 \\ 0 & 1 & 4 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 3 & 9 & -1 \\ 0 & -2 & -8 & 2 \\ 0 & 1 & 4 & -1 \end{bmatrix}$$
$$R'_{2} = R_{3} \mapsto \begin{bmatrix} 1 & 3 & 9 & -1 \\ 0 & 1 & 4 & -1 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Example of Theorem Example (Putting a matrix in RREF)

$$\begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix}$$
$$R'_{1} = \frac{1}{3}R_{1} \begin{bmatrix} 1 & 3 & 9 & -1 \\ -3 & -11 & -35 & 5 \\ 1 & 4 & 13 & -2 \end{bmatrix}$$
$$R'_{2} = 3R_{1} + R_{2} \begin{bmatrix} 1 & 3 & 9 & -1 \\ -3 & -11 & -35 & 5 \\ 1 & 4 & 13 & -2 \end{bmatrix}$$
$$R'_{2} = R_{3} \mapsto R'_{3} = -R_{1} + R_{3} \begin{bmatrix} 1 & 3 & 9 & -1 \\ 0 & -2 & -8 & 2 \\ 0 & 1 & 4 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 3 & 9 & -1 \\ 0 & -2 & -8 & 2 \\ 0 & 1 & 4 & -1 \end{bmatrix}$$
$$R'_{2} = R_{3} \mapsto R''_{3} = 2R_{2} + R_{3} \begin{bmatrix} 1 & 3 & 9 & -1 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$R'_{1} = R_{1} - 3R_{2} \begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

S. Casalaina

Introduction

Definition of RREF Elementary Row Operations

Main Theorem