## Introduction

Definition of RREF
Elementary Row Operations

# Reduced row echelon form of a matrix 

Sebastian Casalaina

August 13, 2022

## Introduction

The Reduced Row Echelon Form (RREF) of a given matrix is a special matrix obtained from the original matrix by taking linear combinations of the rows.

## Introduction

The Reduced Row Echelon Form (RREF) of a given matrix is a special matrix obtained from the original matrix by taking linear combinations of the rows.

Putting a matrix in Reduced Row Echelon Form will be the main computational tool we will use in this class.

## Introduction <br> Definition (Reduced Row Echelon Form (RREF))

## Introduction

## Definition (Reduced Row Echelon Form (RREF))

A matrix is in Reduced Row Echelon Form (RREF) if the following hold:

## Introduction

## Definition (Reduced Row Echelon Form (RREF))

A matrix is in Reduced Row Echelon Form (RREF) if the following hold:

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (i.e., all zero rows, if any, belong at the bottom of the matrix).


## Introduction

## Definition (Reduced Row Echelon Form (RREF))

A matrix is in Reduced Row Echelon Form (RREF) if the following hold:

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (i.e., all zero rows, if any, belong at the bottom of the matrix).
- The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.


## Introduction

## Definition (Reduced Row Echelon Form (RREF))

A matrix is in Reduced Row Echelon Form (RREF) if the following hold:

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (i.e., all zero rows, if any, belong at the bottom of the matrix).
- The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.
- Every leading coefficient is 1 and is the only nonzero entry in its column.


## Introduction

## Definition (Reduced Row Echelon Form (RREF))

A matrix is in Reduced Row Echelon Form (RREF) if the following hold:

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeroes (i.e., all zero rows, if any, belong at the bottom of the matrix).
- The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.
- Every leading coefficient is 1 and is the only nonzero entry in its column.

$$
\left[\begin{array}{lllll}
1 & 3 & 0 & 0 & 2 \\
0 & 0 & \mathbf{1} & 0 & 1 \\
0 & 0 & 0 & \mathbf{1} & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Figure: A matrix in reduced row echelon form

## Introduction

## Definition (Elementary Row Operations)

## Introduction

## Introduction

## Definition (Elementary Row Operations)

Let $A$ and $B$ be matrices of the same size. We say that $B$ is obtained from $A$ by an elementary row operation if one of the following hold:

## Introduction

## Definition (Elementary Row Operations)

Let $A$ and $B$ be matrices of the same size. We say that $B$ is obtained from $A$ by an elementary row operation if one of the following hold:

- $B$ is obtained from $A$ by interchanging two rows;


## Introduction

## Definition (Elementary Row Operations)

Let $A$ and $B$ be matrices of the same size. We say that $B$ is obtained from $A$ by an elementary row operation if one of the following hold:

- $B$ is obtained from $A$ by interchanging two rows;
- $B$ is obtained from $A$ by multiplying a row of $A$ by a nonzero scalar;


## Introduction

## Definition (Elementary Row Operations)

Let $A$ and $B$ be matrices of the same size. We say that $B$ is obtained from $A$ by an elementary row operation if one of the following hold:

- $B$ is obtained from $A$ by interchanging two rows;
- $B$ is obtained from $A$ by multiplying a row of $A$ by a nonzero scalar;
- $B$ is obtained from $A$ by adding a scalar multiple of one row of $A$ to another.


## Introduction

## Definition (Elementary Row Operations)

Let $A$ and $B$ be matrices of the same size. We say that $B$ is obtained from $A$ by an elementary row operation if one of the following hold:

- $B$ is obtained from $A$ by interchanging two rows;
- $B$ is obtained from $A$ by multiplying a row of $A$ by a nonzero scalar;
- $B$ is obtained from $A$ by adding a scalar multiple of one row of $A$ to another.
We say that $B$ is obtained from $A$ by elementary row operations if there is a finite sequence of matrices $A=A_{0}, A_{1}, \ldots, A_{n}=B$, with $A_{i+1}$ obtained from $A_{i}, i=1, \ldots, n-1$, by an elementary row operation.


## Introduction

## Introduction

Definition of PREI

## Example (Elementary Row Operations)

$$
\left[\begin{array}{rrrr}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right] \quad A=A_{0}
$$

## Introduction

## Example (Elementary Row Operations)

$$
R_{1}^{\prime}=\frac{1}{3} R_{1}\left[\begin{array}{rrrr}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right] \quad A=A_{0}
$$

## Introduction

## Example (Elementary Row Operations)

$$
\left.\begin{array}{r}
R_{1}^{\prime}=\frac{1}{3} R_{1}\left[\begin{array}{rrrr}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right] \quad A=A_{0} \\
1
\end{array} \begin{array}{rrrr} 
& 3 & -1 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right] A_{1}
$$

Main Theorem

## Main Theorem

## Introduction

Definition of RREF
Elementary Row Operations
Main Theorem
Example of Theorem

Theorem
Given a matrix $A$, there is a unique matrix $\operatorname{RREF}(A)$ that is in Reduced Row Echelon Form that can be obtained from A by elementary row operations.

## Main Theorem

## Introduction

Definition of RREF

Theorem
Given a matrix $A$, there is a unique matrix $\operatorname{RREF}(A)$ that is in Reduced Row Echelon Form that can be obtained from A by elementary row operations.

## Proof.

## Main Theorem

## Introduction

Definition of RREF

Theorem
Given a matrix $A$, there is a unique matrix $\operatorname{RREF}(A)$ that is in Reduced Row Echelon Form that can be obtained from A by elementary row operations.

Proof.
Exercise.

## Example of Theorem

## Example of Theorem

## Example (Putting a matrix in RREF)

## Example of Theorem

Example (Putting a matrix in RREF)

$$
\left[\begin{array}{rrrr}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

## Example of Theorem

## Example (Putting a matrix in RREF)

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]} \\
& R_{1}^{\prime}=\frac{1}{3} R_{1} \\
& R_{3}^{\prime}=\frac{1}{2} R_{3}
\end{aligned}\left[\begin{array}{rrrr}
1 & 3 & 9 & -1 \\
-3 & -11 & -35 & 5 \\
1 & 4 & 13 & -2
\end{array}\right]
$$

## Example of Theorem

Example (Putting a matrix in RREF)

$$
\begin{aligned}
R_{1}=\frac{1}{3} R_{1} \\
R_{3}^{\prime}=\frac{1}{2} R_{3}
\end{aligned}\left[\begin{array}{rrrr}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

## Example of Theorem

Example (Putting a matrix in RREF)

$$
\begin{array}{r}
R_{1}^{\prime}=\frac{1}{3} R_{1} \\
R_{3}^{\prime}=\frac{1}{2} R_{3}
\end{array}\left[\begin{array}{rrrr}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

## Example of Theorem

## Example (Putting a matrix in RREF)

$$
\begin{array}{r}
R_{1}^{\prime}=\frac{1}{3} R_{1} \\
R_{3}^{\prime}=\frac{1}{2} R_{3}
\end{array}\left[\begin{array}{rrrr}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

