Solving a system of linear equations with a modified matrix

Sebastian Casalaina

September 17, 2022

Introduction

Given a system of equations, there is a row reduction algorithm to solve the system of equations.

Introduction
Solving a system of RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example
Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Introduction

Given a system of equations, there is a row reduction algorithm to solve the system of equations.

In these notes I explain a technique that makes this slightly faster.

An example of a system of linear equations

Suppose we want to solve the system of equations:

$$
\begin{array}{r}
3 x_{1}+9 x_{2}+27 x_{3}=-3 \\
-3 x_{1}-11 x_{2}-35 x_{3}=5 \\
2 x_{1}+8 x_{2}+26 x_{3}=-4
\end{array}
$$

An example of a system of linear equations

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this

Explaining why this works
in our example
A few comments

An example of solving a system of linear equations

We know that the first step in solving the system of equations is to consider the associated augmented matrix.

An example of a system of linear equations example

Solutions to the system of equations

An example of solving a system of linear equations

We know that the first step in solving the system of equations is to consider the associated augmented matrix.

Here again is the system of equations.

$$
\begin{aligned}
3 x_{1}+9 x_{2}+27 x_{3} & =-3 \\
-3 x_{1}-11 x_{2}-35 x_{3} & =5 \\
2 x_{1}+8 x_{2}+26 x_{3} & =-4
\end{aligned}
$$

An example of solving a system of linear equations

We know that the first step in solving the system of equations is to consider the associated augmented matrix.

Here again is the system of equations.

$$
\begin{array}{r}
3 x_{1}+9 x_{2}+27 x_{3}=-3 \\
-3 x_{1}-11 x_{2}-35 x_{3}=5 \\
2 x_{1}+8 x_{2}+26 x_{3}=-4
\end{array}
$$

And here is the associated augmented matrix:

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

Putting left hand side of the augmented matrix in RREF

Next we put the left hand side of the augmented matrix in RREF.

An example of a system of linear equations

Modifying the matrix

Putting left hand side of the augmented matrix in RREF

Next we put the left hand side of the augmented matrix in RREF. Again, the augmented matrix is:

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

An example of a system of linear equations

Putting left hand side of the augmented matrix in RREF

We now proceed to put the left hand side of the augmented matrix in RREF:

introduction
 Solving a system of
 An example of a system of linear equations

Putting left hand side of the augmented matrix in RREF

We now proceed to put the left hand side of the augmented matrix in RREF:

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

An example of a system of linear equations

Putting left hand side of the augmented matrix in RREF

$$
\left.\begin{array}{l}
{\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]} \\
R_{1}^{\prime}=\frac{1}{3} R_{1} \\
R_{3}^{\prime}=\frac{1}{2} R_{3}
\end{array} \begin{array}{rrr|r}
1 & 3 & 9 & -1 \\
-3 & -11 & -35 & 5 \\
1 & 4 & 13 & -2
\end{array}\right]
$$

An example of a system of linear equations

Modrying the matrix in our example
Solutions to the system of equations

Explaining why this

Putting left hand side of the augmented matrix in RREF

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]} \\
& \begin{array}{l}
R_{1}^{\prime}=\frac{1}{3} R_{1} \\
R_{3}^{\prime}=\frac{1}{2} R_{3}
\end{array}\left[\begin{array}{rrr|r}
1 & 3 & 9 & -1 \\
-3 & -11 & -35 & 5 \\
1 & 4 & 13 & -2
\end{array}\right] \\
& \begin{array}{l}
R_{2}^{\prime}=3 R_{1}+R_{2} \\
R_{3}^{\prime}=-R_{1}+R_{3}
\end{array}\left[\begin{array}{rrr|r}
1 & 3 & 9 & -1 \\
0 & -2 & -8 & 2 \\
0 & 1 & 4 & -1
\end{array}\right]
\end{aligned}
$$

An example of a system of linear equations

Putting left hand side of the augmented matrix in RREF

$$
\begin{array}{r}
R_{1}^{\prime}=\frac{1}{3} R_{1} \\
R_{3}^{\prime}=\frac{1}{2} R_{3}
\end{array}\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

An example of a system of linear equations

Putting left hand side of augmented matrix in RREF

$$
\begin{array}{r}
R_{1}^{\prime}=\frac{1}{3} R_{1} \\
R_{3}^{\prime}=\frac{1}{2} R_{3}
\end{array}\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

An example of a system of linear equations

Putting left hand side of the augmented matrix in RREF

In other words, the matrix we obtain by putting the left hand side of the augmented matrix

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

in RREF is

Putting left hand side of the augmented matrix in RREF

In other words, the matrix we obtain by putting the left hand side of the augmented matrix

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

in RREF is

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Putting left hand side of the augmented matrix in RREF

In other words, the matrix we obtain by putting the left hand side of the augmented matrix

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

in RREF is

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since the system of equations is consistent (there are no rows that are zero on the left hand side and non-zero on the right), we can try to find all of the solutions to the system of equations.

An example of a system of linear equations

Modifying the matrix

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

Introduction

siving a system of

Modifying the matrix

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

- We may only add rows that are zero except for one entry, which is a -1 . inear equations

Modifying the matrix Modifying the matrix in our example
Solutions to the system of equations

Modifying the matrix

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

- We may only add rows that are zero except for one entry, which is a -1 . For instance,

$$
\left[\begin{array}{lllll}
-1 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

Modifying the matrix

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

- We may only add rows that are zero except for one entry, which is a -1 . For instance,

$$
\left[\begin{array}{lllll}
-1 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

or

$$
\left[\begin{array}{lllll}
0 & -1 & 0 & \ldots & 0
\end{array}\right]
$$

Modifying the matrix

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

- We may only add rows that are zero except for one entry, which is a -1 . For instance,

$$
\left[\begin{array}{lllll}
-1 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

or

$$
\left[\begin{array}{lllll}
0 & -1 & 0 & \ldots & 0
\end{array}\right]
$$

or

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & \ldots & -1
\end{array}\right]
$$

Modifying the matrix

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

- We may only add rows that are zero except for one entry, which is a -1 . For instance,

$$
\left[\begin{array}{lllll}
-1 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

or

$$
\left[\begin{array}{lllll}
0 & -1 & 0 & \ldots & 0
\end{array}\right]
$$

or

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & \ldots & -1
\end{array}\right]
$$

- We add such rows until the left hand side of our matrix is a square matrix with only 1 or -1 entries on the diagonal.

Modifying the matrix in our example

Recall that the matrix we obtained by putting the left hand side of the augmented matrix

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

in RREF was

Modifying the matrix in our example

Recall that the matrix we obtained by putting the left hand side of the augmented matrix

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

in RREF was

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Modifying the matrix in our example

Recall that the matrix we obtained by putting the left hand side of the augmented matrix

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

in RREF was

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The left hand side of the matrix is square,

Modifying the matrix in our example

Recall that the matrix we obtained by putting the left hand side of the augmented matrix

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

in RREF was

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The left hand side of the matrix is square, but it does not have only 1 and -1 on the diagonal.

Modifying the matrix in our example

Recall that the matrix we obtained by putting the left hand side of the augmented matrix

$$
\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]
$$

in RREF was

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The left hand side of the matrix is square, but it does not have only 1 and -1 on the diagonal.

Modifying the matrix in our example

To fix this problem

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1) & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Modifying the matrix in our example

To fix this problem

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1) & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

we add rows that are zero except for one entry, which is a -1 ,

Modifying the matrix in our example

To fix this problem

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1) & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

we add rows that are zero except for one entry, which is a -1 , until the left hand side of our matrix is a square matrix with only 1 or -1 entries on the diagonal.

Modifying the matrix in our example

To fix this problem

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1) & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

we add rows that are zero except for one entry, which is a -1 , until the left hand side of our matrix is a square matrix with only 1 or -1 entries on the diagonal.

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & (1) & 4 & -1 \\
0 & 0 & (-1) & 0
\end{array}\right]
$$

Modifying the matrix in our example

The matrix we obtain is called the modified matrix:

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & (-1) & 0
\end{array}\right]
$$

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Modifying the matrix in our example

The matrix we obtain is called the modified matrix:

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & (-1) & 0
\end{array}\right]
$$

The solutions to our system of equations are determined by certain columns of the modified matrix.

Modifying the matrix in our example

Assuming the system of equations has a solution (i.e., it is consistent),

Introduction

Solving a system of RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Modifying the matrix in our example

Assuming the system of equations has a solution (i.e., it is consistent), then the solutions are determined by the last column (green column):

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & (-1) & 0
\end{array}\right]
$$

Solutions to the system of equations

Modifying the matrix in our example

Assuming the system of equations has a solution (i.e., it is consistent), then the solutions are determined by the last column (green column):

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & (1) & 0
\end{array}\right]
$$

as well as the columns with the red -1 entries (orange column):

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & (-1) & 0
\end{array}\right]
$$

Modifying the matrix in our example

Having identified the pertinent columns:

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & (-1) & 0
\end{array}\right]
$$

Introduction

Solving a system of

inear equations using

RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example equations

Explaining why this

Explaining why this works in our example

A few comments

Modifying the matrix in our example

Having identified the pertinent columns:

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & (-1) & 0
\end{array}\right]
$$

the solutions are given by

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
\Theta 1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

Modifying the matrix in our example

Having identified the pertinent columns:

$$
\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & (1) & 4 & -1 \\
0 & 0 & (-1) & 0
\end{array}\right]
$$

An example of a system of linear equations

Modifying the matrix
Modifying the matrix in our
Solutions to the system of equations

The main theorem (roughly)

Theorem

The algorithm described above gives all solutions to a given system of equations.

Introduction
 Solving a system of RREF
 An example of a system of linear equations
 Modifying the matrix
 Modifying the matrix in our example
 Solutions to the system of equations
 Explaining why this works
 Explaining why this works

The main theorem (roughly)

Theorem

The algorithm described above gives all solutions to a given system of equations.

Proof.
Exercise.

Explaining why this works in our example

Recall that in our example, the matrix we obtained by putting the left hand side of our augmented matrix in RREF was:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example
Solutions to the system of equations

Explaining why this

Explaining why this works in our example

A few comments

Explaining why this works in our example

Recall that in our example, the matrix we obtained by putting the left hand side of our augmented matrix in RREF was:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This corresponds to the system of equations:

$$
\begin{array}{rlrl}
x_{1} & -3 x_{3} & =2 \\
& x_{2} & +4 x_{3} & =-1
\end{array}
$$

Explaining why this works in our example

Recall that in our example, the matrix we obtained by putting the left hand side of our augmented matrix in RREF was:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This corresponds to the system of equations:

$$
\begin{array}{rlrl}
x_{1} & & -3 x_{3} & =2 \\
& x_{2}+4 x_{3} & =-1
\end{array}
$$

Clearly x_{3} is free, $x_{2}=-4 x_{3}-1$, and $x_{1}=3 x_{3}+2$.

Explaining why this works in our example

Recall that in our example, the matrix we obtained by putting the left hand side of our augmented matrix in RREF was:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This corresponds to the system of equations:

$$
\begin{aligned}
x_{1} \quad & & 3 x_{3} & =2 \\
& x_{2} & +4 x_{3} & =-1
\end{aligned}
$$

Clearly x_{3} is free, $x_{2}=-4 x_{3}-1$, and $x_{1}=3 x_{3}+2$. We can also write this as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

Explaining why this works in our example

So we have our solutions as:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

Introduction

Solving a system of

linear equations using

RREF
An example of a system of linear equations

Modifying the matrix
Modifying the matrix in our example
Solutions to the system of equations

Explaining why this

Explaining why this works in our example

A few comments
Another example

Explaining why this works in our example

So we have our solutions as:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

and as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

introduction

inear equations usin

Modifying the matrix

Modifying the matrix in our example
Solutions to the system of equations

Explaining why this

Explaining why this works in our example

A few comments

Explaining why this works in our example

So we have our solutions as:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

and as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

Clearly we go back and forth by setting $t=-x_{3}$, so both approaches gave the same solutions.

Explaining why this works in our example

Let's think a little more about why both approaches give the same solutions.

```
Introduction
Solving a system of
linear equations using
RREF
An example of a system of
linear equations
Modifying the matrix
Modifying the matrix in our
example
Solutions to the system of
equations
```


Explaining why this

Explaining why this works in our example

A few comments

Explaining why this works in our example

Let's think a little more about why both approaches give the same solutions. Going back to our system of equations

$$
\begin{array}{rlrl}
x_{1} & -3 x_{3} & =2 \\
& x_{2} & +4 x_{3} & =-1
\end{array}
$$

introduction
 ```Solving a system of \\ RREF \\ An example of a system of```
 linear equations
 Modifying the matrix

Modifying the matrix in our
example
Solutions to the system of
equations
Explaining why this
Explaining why this works
in our example

Explaining why this works in our example

Let's think a little more about why both approaches give the same solutions. Going back to our system of equations

$$
\begin{array}{rlrl}
x_{1} & & 3 x_{3} & =2 \\
x_{2} & +4 x_{3} & =-1
\end{array}
$$

we can try to think about the solutions as follows.

Explaining why this works in our example

Let's think a little more about why both approaches give the same solutions. Going back to our system of equations

$$
\begin{array}{rlrl}
x_{1} & -3 x_{3} & =2 \\
& x_{2} & +4 x_{3} & =-1
\end{array}
$$

we can try to think about the solutions as follows. We can rewrite them as

$$
\begin{aligned}
& x_{1}=3 x_{3}+2 \\
& x_{2}=-4 x_{3}-1
\end{aligned}
$$

Explaining why this works in our example

Let's think a little more about why both approaches give the same solutions. Going back to our system of equations

$$
\begin{array}{rlrl}
x_{1} \quad & -3 x_{3} & =2 \\
& x_{2} & +4 x_{3} & =-1
\end{array}
$$

we can try to think about the solutions as follows. We can rewrite them as

$$
\begin{aligned}
& x_{1}=3 x_{3}+2 \\
& x_{2}=-4 x_{3}-1
\end{aligned}
$$

and then write

$$
\begin{aligned}
& x_{1}=3 x_{3}+2 \\
& x_{2}=-4 x_{3}-1 \\
& x_{3}=
\end{aligned} x_{3}+0 .
$$

Explaining why this works in our example

Let's think a little more about why both approaches give the same solutions. Going back to our system of equations

$$
\begin{aligned}
x_{1} \quad 3 x_{3} & =2 \\
& x_{2}+4 x_{3}
\end{aligned}=-1
$$

we can try to think about the solutions as follows. We can rewrite them as

$$
\begin{aligned}
& x_{1}=3 x_{3}+2 \\
& x_{2}=-4 x_{3}-1
\end{aligned}
$$

and then write

$$
\begin{aligned}
& x_{1}=3 x_{3}+2 \\
& x_{2}=-4 x_{3}-1 \\
& x_{3}=x_{3}+0
\end{aligned}
$$

clearly giving

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

Explaining why this works in our example

Given our solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

Introduction

Snluing a everam of
linear equations using
RREF
An example of a system of
linear equations
Modifying the matrix
Modifying the matrix in our example
Solutions to the system of equations

Explaining why this

Explaining why this works in our example

A few comments

Explaining why this works in our example

Given our solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

again we can set $t=-x_{3}$,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

Introduction
 near equations using RREF An example of a system of linear equations
 Modifying the matrix in our example
 Solutions to the system of equations

Explaining why this
 Explaining why this works in our example

A few comments

Explaining why this works in our example

Given our solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

again we can set $t=-x_{3}$,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

hopefully giving a sense of why the two approaches give the same solutions.

Explaining why this works in our example

Given our solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

again we can set $t=-x_{3}$,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

hopefully giving a sense of why the two approaches give the same solutions. The benefit of the latter is that

Explaining why this works in our example

Given our solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

again we can set $t=-x_{3}$,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

hopefully giving a sense of why the two approaches give the same solutions. The benefit of the latter is that considering our RREF matrix and modified matrix:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{rrr|r}
(1) & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Explaining why this works in our example

Given our solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

again we can set $t=-x_{3}$,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

hopefully giving a sense of why the two approaches give the same solutions. The benefit of the latter is that considering our RREF matrix and modified matrix:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & \Theta 1 & 0
\end{array}\right]
$$

we see the vectors in the second solution a little more easily.

Explaining why this works in our example

Given our solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

again we can set $t=-x_{3}$, and we have

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
\Theta 1)
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

hopefully giving a sense of why the two approaches give the same solutions. The benefit of the latter is that considering our RREF matrix and modified matrix:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & \Theta 1 & 0
\end{array}\right]
$$

we see the vectors in the second solution a little more easily.

A few comments

Clearly there is an easily identified matrix algorithm to give the solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

An example of a system of linear equations

Modifying the matrix
Modifying the matrix in our example
Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

A few comments

Clearly there is an easily identified matrix algorithm to give the solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

but this would include multiplying matrix entries by -1 and would therefore include extra steps.

A few comments

Clearly there is an easily identified matrix algorithm to give the solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

but this would include multiplying matrix entries by -1 and would therefore include extra steps.

Also, from the solution

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
\Theta-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

A few comments

Clearly there is an easily identified matrix algorithm to give the solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

but this would include multiplying matrix entries by -1 and would therefore include extra steps.

Also, from the solution

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
\in-1)
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

the circled (red) -1 entries tell you what the free variables are,

A few comments

Clearly there is an easily identified matrix algorithm to give the solution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] x_{3}+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad x_{3} \in \mathbb{R}
$$

but this would include multiplying matrix entries by -1 and would therefore include extra steps.

Also, from the solution

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
4 \\
-1)
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

the circled (red) -1 entries tell you what the free variables are, so you can easily give the former solution from the latter.

Example 2

Here is another example to give the idea.

Introduction

Soluine a evetam of linear equations using RREF

An example of a system of linear equations

Modifying the matrix
Modifying the matrix in our example

Solutions to the system of equations

Explaining why this

 worksExplaining why this works in our example

A few comments

Another example

Example 2

Here is another example to give the idea.
Suppose we are given the system of equations:

Introduction

cothing a .antam of

RREF
 An example of a system of

 linear equations
Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this

 worksExplaining why this works in our example

A few comments

Example 2

Here is another example to give the idea.
Suppose we are given the system of equations:

$$
\begin{aligned}
x_{2} \quad 2 x_{4} & -x_{6}
\end{aligned} \begin{aligned}
- & \\
x_{3}+3 x_{4} & \\
& \\
& x_{5}+2 x_{6}
\end{aligned}=4
$$

Then the associated augmented matrix is

$$
\left[\begin{array}{rrrrrr|r}
0 & 1 & 0 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 3 & 0 & 5 & 4 \\
0 & 0 & 0 & 0 & 1 & 2 & 7
\end{array}\right]
$$

Explaining why this

Explaining why this works
in our example
A few comments
Another example

Example 2

Here is another example to give the idea.
Suppose we are given the system of equations:

$$
\begin{aligned}
x_{2} \quad 2 x_{4} & -x_{6}
\end{aligned} \begin{aligned}
-2 & \\
x_{3}+3 x_{4} & \\
& \\
x_{5}+2 x_{6} & =7
\end{aligned}
$$

Then the associated augmented matrix is

$$
\left[\begin{array}{rrrrrr|r}
0 & 1 & 0 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 3 & 0 & 5 & 4 \\
0 & 0 & 0 & 0 & 1 & 2 & 7
\end{array}\right]
$$

which is already in RREF.

Example 2

Here is another example to give the idea.
Suppose we are given the system of equations:

$$
\begin{aligned}
x_{2} \quad 2 x_{4} & -x_{6}
\end{aligned} \begin{aligned}
- & 3 \\
x_{3}+3 x_{4} & \\
& \\
& x_{5}+2 x_{6}
\end{aligned}=4
$$

Then the associated augmented matrix is

$$
\left[\begin{array}{rrrrrr|r}
0 & 1 & 0 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 3 & 0 & 5 & 4 \\
0 & 0 & 0 & 0 & 1 & 2 & 7
\end{array}\right]
$$

which is already in RREF.
The modified matrix is

$$
\left[\begin{array}{rrrrrr|r}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 3 & 0 & 5 & 4 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 7 \\
0 & 0 & 0 & 0 & 0 & -1 & 0
\end{array}\right]
$$

Example 2

We can now write down all of the solutions.

Introduction

Solving a sustam of linear equations using RREF

An example of a system of linear equations

Modifying the matrix
Modifying the matrix in our example
Solutions to the system of equations

Explaining why this

 worksExplaining why this works in our example

A few comments

Another example

Example 2

We can now write down all of the solutions.
Recall that the modified matrix is

$$
\left[\begin{array}{rrrrrr|r}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 3 & 0 & 5 & 4 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 7 \\
0 & 0 & 0 & 0 & 0 & -1 & 0
\end{array}\right]
$$

Example 2

We can now write down all of the solutions.
Recall that the modified matrix is

$$
\left[\begin{array}{rrrrrr|r}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -2 & 0 & -1 & 3 \\
0 & 0 & 1 & 3 & 0 & 5 & 4 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 7 \\
0 & 0 & 0 & 0 & 0 & -1 & 0
\end{array}\right]
$$

and so the solutions are

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] t_{1}+\left[\begin{array}{r}
0 \\
-2 \\
3 \\
-1 \\
0 \\
0
\end{array}\right] t_{2}+\left[\begin{array}{r}
0 \\
-1 \\
5 \\
0 \\
2 \\
-1
\end{array}\right] t_{3}+\left[\begin{array}{l}
0 \\
3 \\
4 \\
0 \\
7 \\
0
\end{array}\right]} \\
& t_{1}, t_{2}, t_{3} \in \mathbb{R} \text {. }
\end{aligned}
$$

Example 2

We can convert the solutions if we want as follows. Our original solutions were:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] t_{1}+\left[\begin{array}{r}
0 \\
-2 \\
3 \\
-1 \\
0 \\
0
\end{array}\right] t_{2}+\left[\begin{array}{r}
0 \\
-1 \\
5 \\
0 \\
2 \\
-1
\end{array}\right] t_{3}+\left[\begin{array}{l}
0 \\
3 \\
4 \\
0 \\
7 \\
0
\end{array}\right]} \\
& t_{1}, t_{2}, t_{3} \in \mathbb{R} \text {. }
\end{aligned}
$$

A few comments

Another example

Example 2

We can convert the solutions if we want as follows. Our original solutions were:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] t_{1}+\left[\begin{array}{r}
0 \\
-2 \\
3 \\
-1 \\
0 \\
0
\end{array}\right] t_{2}+\left[\begin{array}{r}
0 \\
-1 \\
5 \\
0 \\
2 \\
-1
\end{array}\right] t_{3}+\left[\begin{array}{l}
0 \\
3 \\
4 \\
0 \\
7 \\
0
\end{array}\right]} \\
& t_{1}, t_{2}, t_{3} \in \mathbb{R} \text {. }
\end{aligned}
$$

We replace $t_{1} \mapsto-x_{1}, t_{2} \mapsto-x_{4}, t_{3} \mapsto-x_{6}$,

Example 2

We can convert the solutions if we want as follows. Our original solutions were:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] t_{1}+\left[\begin{array}{r}
0 \\
-2 \\
3 \\
-1 \\
0 \\
0
\end{array}\right] t_{2}+\left[\begin{array}{r}
0 \\
-1 \\
5 \\
0 \\
2 \\
-1
\end{array}\right] t_{3}+\left[\begin{array}{l}
0 \\
3 \\
4 \\
0 \\
7 \\
0
\end{array}\right]} \\
& t_{1}, t_{2}, t_{3} \in \mathbb{R} \text {. }
\end{aligned}
$$

We replace $t_{1} \mapsto-x_{1}, t_{2} \mapsto-x_{4}, t_{3} \mapsto-x_{6}$, and we get

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] x_{1}+\left[\begin{array}{r}
0 \\
2 \\
-3 \\
1 \\
0 \\
0
\end{array}\right] x_{4}+\left[\begin{array}{r}
0 \\
1 \\
-5 \\
0 \\
-2 \\
1
\end{array}\right] x_{6}+\left[\begin{array}{l}
0 \\
3 \\
4 \\
0 \\
7 \\
0
\end{array}\right]} \\
& x_{1}, x_{4}, x_{6} \in \mathbb{R} \text {. }
\end{aligned}
$$

