Solving a system of linear equations with a modified matrix

Sebastian Casalaina

September 17, 2022

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Introduction

Given a system of equations, there is a row reduction algorithm to solve the system of equations.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Introduction

Given a system of equations, there is a row reduction algorithm to solve the system of equations.

In these notes I explain a technique that makes this slightly faster.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

An example of a system of linear equations

Suppose we want to solve the system of equations:

3 <i>x</i> 1	+	9 <i>x</i> ₂	+	27 <i>x</i> 3	=	-3
$-3x_{1}$	_	$11x_2$	_	35 <i>x</i> 3	=	5
$2x_1$	+	8 <i>x</i> ₂	+	$26x_{3}$	=	-4

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

An example of solving a system of linear equations

We know that the first step in solving the system of equations is to consider the associated **augmented matrix**.

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

An example of solving a system of linear equations

We know that the first step in solving the system of equations is to consider the associated **augmented matrix**.

Here again is the system of equations.

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

An example of solving a system of linear equations

We know that the first step in solving the system of equations is to consider the associated **augmented matrix**.

Here again is the system of equations.

And here is the associated augmented matrix:

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Next we put the left hand side of the augmented matrix in RREF.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Next we put the left hand side of the augmented matrix in RREF. Again, the augmented matrix is:

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

We now proceed to put the left hand side of the augmented matrix in RREF:

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

We now proceed to put the left hand side of the augmented matrix in RREF:

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

$$\begin{bmatrix} 3 & 9 & 27 & | & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & | & -4 \end{bmatrix}$$
$$R'_{1} = \frac{1}{3}R_{1} \begin{bmatrix} 1 & 3 & 9 & | & -1 \\ -3 & -11 & -35 & 5 \\ 1 & 4 & 13 & | & -2 \end{bmatrix}$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

$$\begin{bmatrix} 3 & 9 & 27 & | & -3 \\ -3 & -11 & -35 & | & 5 \\ 2 & 8 & 26 & | & -4 \end{bmatrix}$$
$$R'_{1} = \frac{1}{3}R_{1} \begin{bmatrix} 1 & 3 & 9 & | & -1 \\ -3 & -11 & -35 & | & 5 \\ 1 & 4 & 13 & | & -2 \end{bmatrix}$$
$$R'_{2} = 3R_{1} + R_{2}$$
$$R'_{3} = -R_{1} + R_{3} \begin{bmatrix} 1 & 3 & 9 & | & -1 \\ 0 & -2 & -8 & | & 2 \\ 0 & 1 & 4 & | & -1 \end{bmatrix}$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

$$\begin{bmatrix} 3 & 9 & 27 & | & -3 \\ -3 & -11 & -35 & | & 5 \\ 2 & 8 & 26 & | & -4 \end{bmatrix}$$
$$R'_{1} = \frac{1}{3}R_{1} \begin{bmatrix} 1 & 3 & 9 & | & -1 \\ -3 & -11 & -35 & | & 5 \\ 1 & 4 & 13 & | & -2 \end{bmatrix}$$
$$R'_{2} = 3R_{1} + R_{2} \\R'_{3} = -R_{1} + R_{3} \begin{bmatrix} 1 & 3 & 9 & | & -1 \\ 0 & -2 & -8 & | & 2 \\ 0 & 1 & 4 & | & -1 \end{bmatrix}$$
$$R'_{2} = R_{3} \mapsto \\R'_{3} = R_{2} \qquad R''_{3} = 2R'_{2} + R'_{3} \begin{bmatrix} 1 & 3 & 9 & | & -1 \\ 0 & 1 & 4 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

$$R_{1}' = \frac{1}{3}R_{1}$$

$$R_{1}' = \frac{1}{3}R_{1}$$

$$R_{1}' = \frac{1}{3}R_{1}$$

$$R_{3}' = \frac{1}{2}R_{3}$$

$$\begin{bmatrix} 1 & 3 & 9 & | & -1 \\ -3 & -11 & -35 & | & 5 \\ 1 & 4 & 13 & | & -2 \end{bmatrix}$$

$$R_{2}' = 3R_{1} + R_{2}$$

$$R_{3}' = -R_{1} + R_{3}$$

$$\begin{bmatrix} 1 & 3 & 9 & | & -1 \\ 0 & -2 & -8 & | & 2 \\ 0 & 1 & 4 & | & -1 \end{bmatrix}$$

$$R_{2}' = R_{3} \mapsto$$

$$R_{3}' = R_{2}'$$

$$R_{3}'' = 2R_{2} + R_{3}$$

$$\begin{bmatrix} 1 & 3 & 9 & | & -1 \\ 0 & -2 & -8 & | & 2 \\ 0 & 1 & 4 & | & -1 \end{bmatrix}$$

$$R_{1}' = R_{1} - 3R_{2}$$

$$\begin{bmatrix} 1 & 0 & -3 & | & 2 \\ 0 & 1 & 4 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

In other words, the matrix we obtain by putting the left hand side of the augmented matrix

in RREF is

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

In other words, the matrix we obtain by putting the left hand side of the augmented matrix

$$\begin{bmatrix} 3 & 9 & 27 & | & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & | & -4 \end{bmatrix}$$

in RREF is

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

In other words, the matrix we obtain by putting the left hand side of the augmented matrix

$$\begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix}$$

in RREF is

$$\left[\begin{array}{rrrr|rrrr} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Since the system of equations is consistent (there are no rows that are zero on the left hand side and non-zero on the right), we can try to find all of the solutions to the system of equations.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

▶ We may only add rows that are zero except for one entry, which is a −1.

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

▶ We may only add rows that are zero except for one entry, which is a −1. For instance,

 $\left[\begin{array}{cccc} -1 & 0 & 0 & \dots & 0 \end{array}\right]$

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

▶ We may only add rows that are zero except for one entry, which is a −1. For instance,

$$\begin{bmatrix} -1 & 0 & 0 & \dots & 0 \end{bmatrix}$$

or

$$\left[\begin{array}{cccc} 0 & -1 & 0 & \dots & 0 \end{array}\right]$$

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

▶ We may only add rows that are zero except for one entry, which is a −1. For instance,

or

$$\begin{bmatrix} 0 & -1 & 0 & \dots & 0 \end{bmatrix}$$

or

$$\begin{bmatrix} 0 & 0 & 0 & \dots & -1 \end{bmatrix}$$

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Another example

12 / 29

Since the system of equations is consistent, the next step is to add rows to the matrix subject to the following rules:

▶ We may only add rows that are zero except for one entry, which is a −1. For instance,

$$\begin{bmatrix} -1 & 0 & 0 & \dots & 0 \end{bmatrix}$$

or

 $\left[\begin{array}{cccc} 0 & -1 & 0 & \dots & 0 \end{array}\right]$

or

 $\left[\begin{array}{cccc} 0 & 0 & 0 & \ldots & -1 \end{array}\right]$

➤ We add such rows until the left hand side of our matrix is a square matrix with only 1 or -1 entries on the diagonal.

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Recall that the matrix we obtained by putting the left hand side of the augmented matrix

$$\begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix}$$

in RREF was

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Recall that the matrix we obtained by putting the left hand side of the augmented matrix

$$\begin{vmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{vmatrix}$$

in RREF was

$$\left[\begin{array}{rrrr|rrrr}1 & 0 & -3 & 2\\0 & 1 & 4 & -1\\0 & 0 & 0 & 0\end{array}\right]$$

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Recall that the matrix we obtained by putting the left hand side of the augmented matrix

$$\begin{bmatrix} 3 & 9 & 27 & | & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & | & -4 \end{bmatrix}$$

in RREF was

 $\left[\begin{array}{rrrr|rrr} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right]$

The left hand side of the matrix is square,

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Recall that the matrix we obtained by putting the left hand side of the augmented matrix

$$\begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix}$$

in RREF was

$$\left[\begin{array}{ccc|c} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

The left hand side of the matrix is square, but it does not have only 1 and -1 on the diagonal.

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Recall that the matrix we obtained by putting the left hand side of the augmented matrix

$$\begin{bmatrix} 3 & 9 & 27 & -3 \\ -3 & -11 & -35 & 5 \\ 2 & 8 & 26 & -4 \end{bmatrix}$$

in RREF was

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The left hand side of the matrix is square, but it does not have only 1 and -1 on the diagonal.

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

To fix this problem

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

To fix this problem

$$\begin{array}{c|cccccc} (1) & 0 & -3 & 2 \\ 0 & (1) & 4 & -1 \\ 0 & 0 & (0) & 0 \end{array} \right]$$

we add rows that are zero except for one entry, which is a -1,

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

To fix this problem

we add rows that are zero except for one entry, which is a -1, until the left hand side of our matrix is a square matrix with only 1 or -1 entries on the diagonal.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works n our example

A few comments

To fix this problem

we add rows that are zero except for one entry, which is a -1, until the left hand side of our matrix is a square matrix with only 1 or -1 entries on the diagonal.

$$\begin{bmatrix} (1) & 0 & -3 & | & 2 \\ 0 & (1) & 4 & | & -1 \\ 0 & 0 & (-1) & 0 \end{bmatrix}$$

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works n our example

A few comments

The matrix we obtain is called the modified matrix:

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

The matrix we obtain is called the modified matrix:

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

The solutions to our system of equations are determined by certain columns of the modified matrix.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Assuming the system of equations has a solution (i.e., it is consistent),

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Assuming the system of equations has a solution (i.e., it is consistent), then the solutions are determined by the last column (green column):

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Assuming the system of equations has a solution (i.e., it is consistent), then the solutions are determined by the last column (green column):

$$\begin{bmatrix}
\left(\begin{array}{cc|c}
0 & 0 & -3 \\
0 & \left(\begin{array}{cc|c}
-3 & 2 \\
-1 \\
0 & 0 & -1 \\
0 & 0 \end{bmatrix}
\end{bmatrix}$$

as well as the columns with the red -1 entries (orange column):

$$\left[\begin{array}{cc|c} (1) & 0 & -3 & 2 \\ 0 & (1) & 4 & -1 \\ 0 & 0 & (-1) & 0 \end{array}\right]$$

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Having identified the pertinent columns:

$$\begin{bmatrix} (1) & 0 & -3 & | & 2 \\ 0 & (1) & 4 & | & -1 \\ 0 & 0 & (-1) & 0 \end{bmatrix}$$

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Having identified the pertinent columns:

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

the solutions are given by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ -1 \\ 0 \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}$$

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Having identified the pertinent columns:

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

the solutions are given by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ -1 \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}$$

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

The main theorem (roughly)

Theorem

The algorithm described above gives all solutions to a given system of equations.

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

The main theorem (roughly)

Theorem

The algorithm described above gives all solutions to a given system of equations.

Proof.

Exercise.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Recall that in our example, the matrix we obtained by putting the left hand side of our augmented matrix in RREF was:

$$\left[\begin{array}{ccc|c} 1 & 0 & -3 & | & 2 \\ 0 & 1 & 4 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{array} \right]$$

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Recall that in our example, the matrix we obtained by putting the left hand side of our augmented matrix in RREF was:

$$\begin{array}{c|ccccc} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{array}$$

This corresponds to the system of equations:

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Recall that in our example, the matrix we obtained by putting the left hand side of our augmented matrix in RREF was:

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This corresponds to the system of equations:

Clearly x_3 is free, $x_2 = -4x_3 - 1$, and $x_1 = 3x_3 + 2$.

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Recall that in our example, the matrix we obtained by putting the left hand side of our augmented matrix in RREF was:

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This corresponds to the system of equations:

Clearly x_3 is free, $x_2 = -4x_3 - 1$, and $x_1 = 3x_3 + 2$. We can also write this as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

So we have our solutions as:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

So we have our solutions as:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

and as

$$\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right] = \left[\begin{array}{c} -3\\ 4\\ -1 \end{array}\right]t + \left[\begin{array}{c} 2\\ -1\\ 0 \end{array}\right], \quad t \in \mathbb{R}$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

So we have our solutions as:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

and as

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ -1 \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}$$

Clearly we go back and forth by setting $t = -x_3$, so both approaches gave the same solutions.

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Let's think a little more about *why* both approaches give the same solutions.

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Let's think a little more about *why* both approaches give the same solutions. Going back to our system of equations

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Let's think a little more about *why* both approaches give the same solutions. Going back to our system of equations

we can try to think about the solutions as follows.

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Let's think a little more about *why* both approaches give the same solutions. Going back to our system of equations

we can try to think about the solutions as follows. We can rewrite them as

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Let's think a little more about *why* both approaches give the same solutions. Going back to our system of equations

we can try to think about the solutions as follows. We can rewrite them as

x_1	=	$3x_3$	+	2
<i>x</i> 2	=	$-4x_{3}$	—	1

and then write

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Let's think a little more about *why* both approaches give the same solutions. Going back to our system of equations

we can try to think about the solutions as follows. We can rewrite them as $= 3x_3 + 2$

 X_1

 $x_2 = -4x_3 - 1$

and then write

clearly giving

$$\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right] = \left[\begin{array}{c} 3\\ -4\\ 1 \end{array}\right] x_3 + \left[\begin{array}{c} 2\\ -1\\ 0 \end{array}\right], \ x_3 \in \mathbb{R}$$

S. Casalaina

Explaining why this works in our example

Given our solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Given our solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

again we can set $t = -x_3$,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ -1 \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}$$

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Given our solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

again we can set $t = -x_3$,

$$\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right] = \left[\begin{array}{c} -3\\ 4\\ -1 \end{array}\right]t + \left[\begin{array}{c} 2\\ -1\\ 0 \end{array}\right], \quad t \in \mathbb{R}$$

hopefully giving a sense of why the two approaches give the same solutions.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Given our solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

again we can set $t = -x_3$,

$$\left[\begin{array}{c} x_1\\ x_2\\ x_3\end{array}\right] = \left[\begin{array}{c} -3\\ 4\\ -1\end{array}\right]t + \left[\begin{array}{c} 2\\ -1\\ 0\end{array}\right], \quad t \in \mathbb{R}$$

hopefully giving a sense of why the two approaches give the same solutions. The benefit of the latter is that

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Given our solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

again we can set $t = -x_3$,

$$\left[\begin{array}{c} x_1\\ x_2\\ x_3\end{array}\right] = \left[\begin{array}{c} -3\\ 4\\ -1\end{array}\right]t + \left[\begin{array}{c} 2\\ -1\\ 0\end{array}\right], \quad t \in \mathbb{R}$$

hopefully giving a sense of *why* the two approaches give the same solutions. The benefit of the latter is that considering our RREF matrix and modified matrix:

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} (1) & 0 & -3 & 2 \\ 0 & (1) & 4 & -1 \\ 0 & 0 & (1) & 0 \end{bmatrix}$$

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of inear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Given our solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

again we can set $t = -x_3$,

$$\left[\begin{array}{c} x_1\\ x_2\\ x_3\end{array}\right] = \left[\begin{array}{c} -3\\ 4\\ -1\end{array}\right]t + \left[\begin{array}{c} 2\\ -1\\ 0\end{array}\right], \quad t \in \mathbb{R}$$

hopefully giving a sense of *why* the two approaches give the same solutions. The benefit of the latter is that considering our RREF matrix and modified matrix:

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} (1) & 0 & -3 & 2 \\ 0 & (1) & 4 & -1 \\ 0 & 0 & (1) & 0 \end{bmatrix}$$

we see the vectors in the second solution a little more easily.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Given our solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

again we can set $t = -x_3$, and we have

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ (1) \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}$$

hopefully giving a sense of *why* the two approaches give the same solutions. The benefit of the latter is that considering our RREF matrix and modified matrix:

$$\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} (1) & 0 & -3 & 2 \\ 0 & (1) & 4 & -1 \\ 0 & 0 & (-1) & 0 \end{bmatrix}$$

we see the vectors in the second solution a little more easily.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Clearly there is an easily identified matrix algorithm to give the solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Clearly there is an easily identified matrix algorithm to give the solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

but this would include multiplying matrix entries by -1 and would therefore include extra steps.

S. Casalaina

Introduction

olving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Clearly there is an easily identified matrix algorithm to give the solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

but this would include multiplying matrix entries by -1 and would therefore include extra steps.

Also, from the solution

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ -1 \\ 0 \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}$$

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Clearly there is an easily identified matrix algorithm to give the solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

but this would include multiplying matrix entries by -1 and would therefore include extra steps.

Also, from the solution

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ -1 \\ 0 \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}$$

the circled (red) -1 entries tell you what the free variables are,

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Clearly there is an easily identified matrix algorithm to give the solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad x_3 \in \mathbb{R}$$

but this would include multiplying matrix entries by -1 and would therefore include extra steps.

Also, from the solution

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ (1) \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}$$

the circled (red) -1 entries tell you what the free variables are, so you can easily give the former solution from the latter.

S. Casalaina

Introduction

olving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Here is another example to give the idea.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Here is another example to give the idea. Suppose we are given the system of equations:

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Here is another example to give the idea. Suppose we are given the system of equations:

Then the associated augmented matrix is

$$\left[\begin{array}{ccccccccccc} 0 & 1 & 0 & -2 & 0 & -1 & | & 3 \\ 0 & 0 & 1 & 3 & 0 & 5 & | & 4 \\ 0 & 0 & 0 & 0 & 1 & 2 & | & 7 \end{array}\right]$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Here is another example to give the idea. Suppose we are given the system of equations:

Then the associated augmented matrix is

$$\begin{bmatrix} 0 & 1 & 0 & -2 & 0 & -1 & | & 3 \\ 0 & 0 & 1 & 3 & 0 & 5 & | & 4 \\ 0 & 0 & 0 & 0 & 1 & 2 & | & 7 \end{bmatrix}$$

which is already in RREF.

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

Here is another example to give the idea. Suppose we are given the system of equations:

Then the associated augmented matrix is

which is already in RREF. The modified matrix is

$$\left[\begin{array}{ccccccc} -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 3 & 0 & 5 & 4 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \end{array}\right]$$

S. Casalaina

Introduction

Solving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

We can now write down all of the solutions.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

We can now write down all of the solutions. Recall that the modified matrix is

$$\begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 3 & 0 & 5 & 4 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

We can now write down all of the solutions. Recall that the modified matrix is

$$\left[\begin{array}{ccccccccc} -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 3 & 0 & 5 & 4 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \end{array}\right]$$

and so the solutions are

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} t_1 + \begin{bmatrix} 0 \\ -2 \\ 3 \\ -1 \\ 0 \\ 0 \end{bmatrix} t_2 + \begin{bmatrix} 0 \\ -1 \\ 5 \\ 0 \\ 2 \\ -1 \end{bmatrix} t_3 + \begin{bmatrix} 0 \\ 3 \\ 4 \\ 0 \\ 7 \\ 0 \end{bmatrix}$$

 $t_1, t_2, t_3 \in \mathbb{R}$.

S. Casalaina

Introduction

oolving a system of inear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

We can convert the solutions if we want as follows. Our original solutions were:

S. Casalaina

Introduction

iolving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

We can convert the solutions if we want as follows. Our original solutions were:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} t_1 + \begin{bmatrix} 0 \\ -2 \\ 3 \\ -1 \\ 0 \\ 0 \end{bmatrix} t_2 + \begin{bmatrix} 0 \\ -1 \\ 5 \\ 0 \\ 2 \\ -1 \end{bmatrix} t_3 + \begin{bmatrix} 0 \\ 3 \\ 4 \\ 0 \\ 7 \\ 0 \end{bmatrix}$$
$$t_1, t_2, t_3 \in \mathbb{R}.$$

We replace $t_1 \mapsto -x_1$, $t_2 \mapsto -x_4$, $t_3 \mapsto -x_6$,

S. Casalaina

Introduction

iolving a system of mear equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments

We can convert the solutions if we want as follows. Our original solutions were:

$$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \end{bmatrix} = \begin{bmatrix} -1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} t_1 + \begin{bmatrix} 0\\ -2\\ 3\\ -1\\ 0\\ 0 \end{bmatrix} t_2 + \begin{bmatrix} 0\\ -1\\ 5\\ 0\\ 2\\ -1 \end{bmatrix} t_3 + \begin{bmatrix} 0\\ 3\\ 4\\ 0\\ 7\\ 0 \end{bmatrix} t_1, t_2, t_3 \in \mathbb{R}.$$

We replace $t_1 \mapsto -x_1$, $t_2 \mapsto -x_4$, $t_3 \mapsto -x_6$, and we get

$$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} x_1 + \begin{bmatrix} 0\\ 2\\ -3\\ 1\\ 0\\ 0 \end{bmatrix} x_4 + \begin{bmatrix} 0\\ 1\\ -5\\ 0\\ -2\\ 1 \end{bmatrix} x_6 + \begin{bmatrix} 0\\ 3\\ 4\\ 0\\ 7\\ 0 \end{bmatrix} x_1, x_4, x_6 \in \mathbb{R}.$$

S. Casalaina

Introductior

iolving a system of near equations using RREF

An example of a system of linear equations

Modifying the matrix

Modifying the matrix in our example

Solutions to the system of equations

Explaining why this works

Explaining why this works in our example

A few comments