HOMEWORK 1

LINEAR ALGEBRA

MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Homework 1. The problems are from Lay [LLM16, §1.1–2]:

- HW1a Lay Section 1.1: 1, 3, 16.
- HW1a Lay Section 1.2: 1, 7, 29.

CONTENTS

Section 1.1	2
Exercise 1.1.1	2
Exercise 1.1.3	2
Exercise 1.1.16	3
Section 1.2	4
Exercise 1.2.1	4
Exercise 1.2.7	4
Exercise 1.2.29	4
References	5

Date: August 13, 2022.

Section 1.1

Exercise 1.1.1. Solve the system by using elementary row operations on the equations or on the augmented matrix. Follow the systematic elimination procedure described in this section.

$$\begin{array}{rcrcrcrc} x_1 &+& 5x_2 &=& 7\\ -2x_1 &-& 7x_2 &=& -5 \end{array}$$

Solution. The associated augmented matrix for the system of equations is:

Γ	1	5	7
L	-2	-7	-5

Adding 2 times the first row to the second row gives:

Γ	1	5	7	
	0	3	9	

Dividing the second row by 3 gives

1	5	7
0	1	3

Adding -5 times the second row to the first row gives

$$\left[\begin{array}{cc|c} 1 & 0 & -8 \\ 0 & 1 & 3 \end{array}\right]$$

Therefore, the solution is

$$x_1 = -8, x_2 = 3.$$

Remark 0.1. While it is not strictly necessary for the problem, note that we can check that the solution $x_1 = -8$, $x_2 = 3$ is correct by plugging back into the original equations:

$$(-8) + 5(3) = 7$$

 $-2(-8) - 7(3) = -5$

Exercise 1.1.3.

Solution.

Exercise 1.1.16.

Solution.

SECTION 1.2

Exercise 1.2.1. Determine which matrices are in reduced (row) echelon form, and which others are only in (row) echelon form.

Solution. a. RREF, b. RREF, c. Neither (it has a row of zeros above a non-zero row), d. REF.

Exercise 1.2.7.

Solution.

Exercise 1.2.29.

Solution.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu