Exercise 7.5.3

Linear Algebra
 MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 7.5.3 from Lay [LLM16, §7.5]:

Exercise 7.5.3. Consider the matrix of observations

$$
\left[\begin{array}{rrrrrr}
19 & 22 & 6 & 3 & 2 & 20 \\
12 & 6 & 9 & 15 & 13 & 5
\end{array}\right]
$$

Find the principal components of the data.

Solution. The principal components of the data are:

$$
\mathbf{u}_{1} \approx\left[\begin{array}{r}
0.95 \\
-0.32
\end{array}\right] \text { for } \lambda_{1} \approx 95.2 \text { and } \mathbf{u}_{2} \approx\left[\begin{array}{l}
0.32 \\
0.95
\end{array}\right] \text { for } \lambda_{2} \approx 6.8
$$

We have the data matrix :

$$
\mathbf{x}=\left[\begin{array}{rrrrrr}
19 & 22 & 6 & 3 & 2 & 20 \\
12 & 6 & 9 & 15 & 13 & 5
\end{array}\right]
$$

The sum of the elements in the first row is 72 , and the sum of the elements in the second row is 60 , so that the sample mean of the first row is 12 , and the sample mean of the second row is 10 . In other words, $\overline{\mathrm{x}}=\left[\begin{array}{l}12 \\ 10\end{array}\right]$, so that the mean deviation form is:

$$
\begin{aligned}
\hat{\mathbf{x}} & =\left[\begin{array}{rrrrrr}
19 & 22 & 6 & 3 & 2 & 20 \\
12 & 6 & 9 & 15 & 13 & 5
\end{array}\right]-\left[\begin{array}{rrrrrr}
12 & 12 & 12 & 12 & 12 & 12 \\
10 & 10 & 10 & 10 & 10 & 10
\end{array}\right] \\
& =\left[\begin{array}{rrrrrr}
7 & 10 & -6 & -9 & -10 & 8 \\
2 & -4 & -1 & 5 & 3 & -5
\end{array}\right]
\end{aligned}
$$

The sample covariance matrix is then given by

$$
\mathbf{s}=\frac{1}{6-1} \hat{\mathbf{x}} \hat{\mathbf{x}}^{T}=\frac{1}{5}\left[\begin{array}{rrrrrr}
7 & 10 & -6 & -9 & -10 & 8 \\
2 & -4 & -1 & 5 & 3 & -5
\end{array}\right]\left[\begin{array}{rr}
7 & 2 \\
10 & -4 \\
-6 & -1 \\
-9 & 5 \\
-10 & 3 \\
8 & -5
\end{array}\right]=\left[\begin{array}{rr}
86 & -27 \\
-27 & 16
\end{array}\right]
$$

Our goal is to find an orthonormal basis of eigenvectors for the sample covariance matrix s. To this end, we have

$$
p_{\mathbf{s}}(t)=t^{2}-(86+16) t+\left(86 \cdot 16-27^{2}\right)=t^{2}-102+647 .
$$

This gives the eigenvalues of \mathbf{s} as being $\lambda=51 \pm \sqrt{1954} \approx 51 \pm 44.2041$. In other words,

$$
\lambda_{1} \approx 95.2041 \geq \lambda_{2} \approx 6.79593
$$

We now need to find bases for the eigenspaces $E_{\lambda_{1}}$ and $E_{\lambda_{2}}$. We have

$$
E_{\lambda_{1}}=\operatorname{ker}\left(\mathbf{s}-\lambda_{1} I\right) \approx\left[\begin{array}{cc}
-9.20407 & -27 \\
-27 & -79.2041
\end{array}\right] \mapsto \underbrace{\left[\begin{array}{cc}
1 & 2.93348 \\
0 & 0
\end{array}\right]}_{\text {RREF }} \mapsto \underbrace{\left[\begin{array}{cc}
1 & 2.93348 \\
0 & -1
\end{array}\right]}_{\text {modified }}
$$

In other words a basis for $E_{\lambda_{1}}$ is given by $\mathbf{v}_{1} \approx\left[\begin{array}{c}2.93348 \\ -1\end{array}\right]$. We have $\left\|\mathbf{v}_{1}\right\|^{2} \approx 9.60530$, so that $\left\|\mathbf{v}_{1}\right\| \approx$ 3.09924. Therefore an orthonormal basis for $E_{\lambda_{1}}$ is given by

$$
\mathbf{u}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|} \approx\left[\begin{array}{r}
0.946516 \\
-0.322659
\end{array}\right] \approx\left[\begin{array}{r}
0.95 \\
-0.32
\end{array}\right]
$$

Similarly, we have

$$
E_{\lambda_{2}}=\operatorname{ker}\left(\mathbf{s}-\lambda_{2} I\right) \approx\left[\begin{array}{cc}
79.2041 & -27 \\
-27 & 9.20407
\end{array}\right] \mapsto \underbrace{\left[\begin{array}{cc}
1 & -0.340892 \\
0 & 0
\end{array}\right]}_{\text {RREF }} \mapsto \underbrace{\left[\begin{array}{cc}
1 & -0.340892 \\
0 & -1
\end{array}\right]}_{\text {modified }}
$$

In other words a basis for $E_{\lambda_{2}}$ is given by $\mathbf{v}_{2} \approx\left[\begin{array}{c}-0.340892 \\ -1\end{array}\right]$. We have $\left\|\mathbf{v}_{2}\right\|^{2} \approx 1.11621$, so that $\left\|\mathbf{v}_{2}\right\| \approx 1.05651$. Therefore an orthonormal basis for $E_{\lambda_{2}}$ is given by

$$
\mathbf{u}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{1}\right\|} \approx\left[\begin{array}{l}
-0.322659 \\
-0.946516
\end{array}\right] \approx\left[\begin{array}{l}
-0.32 \\
-0.95
\end{array}\right]
$$

We are free to replace our basis vector by its negative, which is what I did in the solution given at the start.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

