Exercise 7.4.18

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 7.4.18 from Lay [LLM16, §7.4]:

Exercise 7.4.18. Suppose that A is square and invertible. Find a singular value decomposition of A^{-1}.

Solution. Suppose that A is square and invertible, and $A=U \Sigma V^{T}$ is an SVD of A, then an SVD of A^{-1} is given by

$$
A^{-1}=V \Sigma^{-1} U^{T}
$$

Indeed, since A is a square matrix, it follows that U, V, and Σ are square matrices of the same size as A. A priori we would have Σ looking like the following square diagonal matrix:

$$
\left[\begin{array}{ccc|c}
\sigma_{1} & & & \\
& \ddots & & 0 \\
& & \sigma_{r} & \\
\hline & 0 & & 0
\end{array}\right]
$$

where $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$. However, since A is also assumed to be invertible, and $A=U \Sigma V^{T}$ is a product of three square matrices of the same size, the matrices U, Σ, and V^{T} are all invertible. In particular, Σ is invertible, so it cannot have any zero entries on the diagonal (the determinant must be nonzero). Therefore, assuming that A is an $n \times n$ matrix, we have

$$
\Sigma=\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right], \quad \Sigma^{-1}=\left[\begin{array}{lll}
1 / \sigma_{1} & & \\
& \ddots & \\
& & 1 / \sigma_{n}
\end{array}\right]
$$

At the same time, since the columns of U and V are given by non-zero orthonormal vectors, we can conclude that U and V are orthogonal matrices. In other words, $U U^{T}=V V^{T}=I$. Therefore

$$
A^{-1}=\left(U \Sigma V^{T}\right)^{-1}=V \Sigma^{-1} U^{T}
$$

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

