Exercise 7.4.18

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 7.4.18 from Lay [LLM16, §7.4]:

Exercise 7.4.18. Suppose that *A* is square and invertible. Find a singular value decomposition of A^{-1} .

Solution. Suppose that *A* is square and invertible, and $A = U\Sigma V^T$ is an SVD of *A*, then an SVD of A^{-1} is given by

$$A^{-1} = V \Sigma^{-1} U^T.$$

Indeed, since *A* is a square matrix, it follows that *U*, *V*, and Σ are square matrices of the same size as *A*. *A priori* we would have Σ looking like the following square diagonal matrix:

$$\begin{bmatrix} \sigma_1 & & \\ & \ddots & & 0 \\ & & \sigma_r & \\ \hline & 0 & & 0 \end{bmatrix}$$

where $\sigma_1 \ge \cdots \ge \sigma_r > 0$. However, since *A* is also assumed to be invertible, and $A = U\Sigma V^T$ is a product of three square matrices of the same size, the matrices *U*, Σ , and V^T are all invertible. In particular, Σ is invertible, so it cannot have any zero entries on the diagonal (the determinant must be nonzero). Therefore, assuming that *A* is an $n \times n$ matrix, we have

$$\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix}, \quad \Sigma^{-1} = \begin{bmatrix} 1/\sigma_1 & & \\ & \ddots & \\ & & 1/\sigma_n \end{bmatrix}$$

Date: December 7, 2022.

$$A^{-1} = (U\Sigma V^{T})^{-1} = V\Sigma^{-1}U^{T}.$$

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu