Exercise 7.3.13

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 7.3.13 from Lay [LLM16, §7.3]:

Exercise 7.3.13. Let A be an $n \times n$ symmetric matrix, let M and m denote the maximum and minimum values of the quadratic form

$$
Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x},
$$

where $\mathbf{x}^{T} \mathbf{x}=1$, and denote the corresponding unit eigenvectors by \mathbf{u}_{1} and \mathbf{u}_{n}. Given any number t between M and m, the steps below show how to find a unit vector \mathbf{x} such that $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}=t$.
(1) Show there exists a number α between 0 and 1 such that

$$
t=(1-\alpha) m+\alpha M
$$

(2) If $n>1$, setting $\mathbf{x}=\sqrt{1-\alpha} \mathbf{u}_{n}+\sqrt{\alpha} \mathbf{u}_{1}$, show that if $\mathbf{x}^{T} \mathbf{x}=1$ and $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}=t$.

Note that if $n=1$, then $m=M$, so that $t=m=M$, and so, setting $\mathbf{x}=\mathbf{u}_{1}$, we have $\mathbf{x}^{T} \mathbf{x}=1$ and $Q(\mathbf{x})=Q\left(\mathbf{u}_{1}\right)=m=M=t$.

Solution to part (1). If $m=M$, then clearly we have $t=m=M$ so that $t=(1-\alpha) m+\alpha M$ for all α between 0 and 1. So assume that $m<M$. Then we have $t=(1-\alpha) m+\alpha M \Longleftrightarrow$ $t=m+\alpha(M-m) \Longleftrightarrow \alpha=\frac{t-m}{M-m}$.

Solution to part (2). Using part (1), choose α between 0 and 1 such that $t=(1-\alpha) m+\alpha M$, and set $\mathbf{x}=\sqrt{1-\alpha} \mathbf{u}_{n}+\sqrt{\alpha} \mathbf{u}_{1}$. Then we have

$$
\begin{aligned}
\mathbf{x}^{T} \mathbf{x} & =\left(\sqrt{1-\alpha} \mathbf{u}_{n}+\sqrt{\alpha} \mathbf{u}_{1}\right)^{T}\left(\sqrt{1-\alpha} \mathbf{u}_{n}+\sqrt{\alpha} \mathbf{u}_{1}\right) \\
& =\left(\sqrt{1-\alpha} \mathbf{u}_{n}^{T}+\sqrt{\alpha} \mathbf{u}_{1}^{T}\right)\left(\sqrt{1-\alpha} \mathbf{u}_{n}+\sqrt{\alpha} \mathbf{u}_{1}\right) \\
& =(1-\alpha)\left\|\mathbf{u}_{n}\right\|^{2}+\sqrt{1-\alpha} \sqrt{\alpha} \mathbf{u}_{n}^{T} \mathbf{u}_{1}+\sqrt{\alpha} \sqrt{1-\alpha} \mathbf{u}_{1}^{T} \mathbf{u}_{n}+\alpha\left\|\mathbf{u}_{1}\right\|^{2} \\
& =(1-\alpha)\left\|\mathbf{u}_{n}\right\|^{2}+\alpha\left\|\mathbf{u}_{1}\right\|^{2} \\
& =(1-\alpha)+\alpha=1 .
\end{aligned}
$$

And we also have

$$
\begin{aligned}
Q(\mathbf{x}) & =\mathbf{x}^{T} A \mathbf{x}=\left(\sqrt{1-\alpha} \mathbf{u}_{n}+\sqrt{\alpha} \mathbf{u}_{1}\right)^{T} A\left(\sqrt{1-\alpha} \mathbf{u}_{n}+\sqrt{\alpha} \mathbf{u}_{1}\right) \\
& =\left(\sqrt{1-\alpha} \mathbf{u}_{n}^{T}+\sqrt{\alpha} \mathbf{u}_{1}^{T}\right) A\left(\sqrt{1-\alpha} \mathbf{u}_{n}+\sqrt{\alpha} \mathbf{u}_{1}\right) \\
& =(1-\alpha) \mathbf{u}_{n}^{T} A \mathbf{u}_{n}+\sqrt{1-\alpha} \sqrt{\alpha} \mathbf{u}_{n}^{T} A \mathbf{u}_{1}+\sqrt{\alpha} \sqrt{1-\alpha} \mathbf{u}_{1}^{T} A \mathbf{u}_{n}+\alpha \mathbf{u}_{1}^{T} A \mathbf{u}_{1} \\
& =(1-\alpha) M+\sqrt{1-\alpha} \sqrt{\alpha} \mathbf{u}_{n}^{T}\left(m \mathbf{u}_{1}\right)+\sqrt{\alpha} \sqrt{1-\alpha} \mathbf{u}_{1}^{T}\left(M \mathbf{u}_{n}\right)+\alpha m \\
& =(1-\alpha) M+\alpha m=t .
\end{aligned}
$$

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

