Exercise 7.2.24

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 7.2.24 from Lay [LLM16, §7.2]:

Exercise 7.2.24. Suppose that $Q(\mathbf{x})$ is the quadratic form associated to the symmetric matrix

$$
A=\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]
$$

in other words, $Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$. Verify the following statements:
a. Q is positive definite if and only if $\operatorname{det}(A)>0$ and $a>0$.
b. Q is negative definite if and only if $\operatorname{det}(A)>0$ and $a<0$.
c. Q is indefinite if and only if $\operatorname{det}(A)<0$.

Solution. Let λ_{1} and λ_{2} be the roots of the characteristic polynomial of A, which are real numbers (see e.g., [LLM16, Thm. 3, p.399]).
a. From [LLM16, Thm. 5, p.407], we have that Q is positive definite $\Longleftrightarrow \lambda_{1}, \lambda_{2}>0$. We have $\lambda_{1}, \lambda_{2}>0 \Longleftrightarrow \lambda_{1} \lambda_{2}>0$ and $\lambda_{1}+\lambda_{2}>0$, since the first equality is equivalent to λ_{1} and λ_{2} having the same sign, and the second equality then implies that the sign must be positive. In other words, using [LLM16, Exe. 7.2.23] that $\operatorname{det}(A)=\lambda_{1} \lambda_{2}$ and $\operatorname{tr}(A)=\lambda_{1}+\lambda_{2}$, we have that Q is positive definite if and only if $\operatorname{det}(A)>0$ and $\operatorname{tr}(A)>0$. Using our particular matrix above, we can express the determinant and trace as $a d-b^{2}$ and $a+d$, respectively. Thus Q is positive definite $\Longleftrightarrow a d-b^{2}>0$ and $a+d>0$. But $a d-b^{2}>0$ and $a+d>0 \Longleftrightarrow a d-b^{2}>0$ and $a>0$, since the equation $a d-b^{2}>0$ is equivalent to $a d>b^{2} \geq 0$, so that it implies $a d>0$, meaning that the sign of a and d must be equal. In other words, given that $a d-b^{2}>0$, having $a>0$ is equivalent to having $a+d>0$. In summary, we have shown that Q is positive definite if and only if $\operatorname{det}(A)>0$ and $a>0$.
b. This is very similar to the last part, and so I will write the proof more concisely, as follows:

$$
\begin{aligned}
Q \text { is negative definite } & \Longleftrightarrow \lambda_{1}, \lambda_{2}<0 \\
& \Longleftrightarrow \lambda_{1} \lambda_{2}>0 \text { and } \lambda_{1}+\lambda_{2}<0 \\
& \Longleftrightarrow \operatorname{det}(A)>0 \text { and } \operatorname{tr}(A)<0 \\
& \Longleftrightarrow a d-b^{2}>0 \text { and } a+d<0 \\
& \Longleftrightarrow a d-b^{2}>0 \text { and } a<0 \\
& \Longleftrightarrow \operatorname{det}(A)>0 \text { and } a<0
\end{aligned}
$$

c. This is also very similar to the last to parts. We have that Q is indefinite if and only if λ_{1} and λ_{2} have opposite signs, which is equivalent to $\lambda_{1} \lambda_{2}<0$. In other words, Q is indefinite if and only if $\operatorname{det}(A)<0$.

Remark 0.1. One can use similar techniques to show that Q is positive semi-definite if and only if $\operatorname{det}(A) \geq 0$ and $a, d \geq 0$ (since $a d-b^{2} \geq 0$ and $a+d \geq 0$ is equivalent to $a d-b^{2} \geq 0$ and $a, d \geq 0$). Similarly, Q is negative semi-definite if and only if $\operatorname{det}(A) \geq 0$ and $a, d \leq 0$ (since $a d-b^{2} \geq 0$ and $a+d \leq 0$ is equivalent to $a d-b^{2} \geq 0$ and $a, d \leq 0$).

Remark 0.2. Note that the matrix $A=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]$ shows that $\operatorname{det}(A) \geq 0$ and $a \geq 0$ is not enough to imply that A is positive semi-definite. Similarly, the matrix $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ shows that $\operatorname{det}(A) \geq$ 0 and $a \leq 0$ is not enough to imply that A is negative semi-definite.

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

