Exercise 7.2.23

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 7.2.23 from Lay [LLM16, §7.2]:

Exercise 7.2.23. If λ_{1} and λ_{2} are the roots of the characteristic polynomial of a 2×2 matrix A, then $p_{A}(t)=\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right)$. Use this to show that $\operatorname{tr}(A)=\lambda_{1}+\lambda_{2}$ and $\operatorname{det}(A)=\lambda_{1} \lambda_{2}$. (Recall that the trace of a matrix is the sum of the diagonal entries.)

Solution. We will show more generally that for an $n \times n$ matrix A, the trace is the sum of the roots of the characteristic polynomial, and the determinant is the product of the roots. In other words, let

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right]
$$

and suppose that the characteristic polynomial

$$
p_{A}(t):=\operatorname{det}(t I-A)=\left|\begin{array}{ccc}
t-a_{11} & \ldots & -a_{1 n} \\
\vdots & \ddots & \vdots \\
-a_{n 1} & \ldots & t-a_{n n}
\end{array}\right|
$$

has roots $\lambda_{1}, \ldots, \lambda_{n}$ (where these roots may be complex numbers, in general). Expanding the determinant above in say the first row, one can see that

$$
p_{A}(t)=t^{n}-\left(a_{11}+\cdots+a_{n n}\right) t^{n-1}+\cdots
$$

At the same time, setting $t=0$ in $p_{A}(t)$ we get the constant term of $p_{A}(t)$, and from the definition of $p_{A}(t)$, we have $p_{A}(0)=\operatorname{det}(0 I-A)=\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$. Putting this together
with the observation that $a_{11}+\cdots+a_{n n}=\operatorname{tr}(A)$, we see that

$$
\begin{equation*}
p_{A}(t)=t^{n}-\operatorname{tr}(A) t^{n-1}+\cdots+(-1)^{n} \operatorname{det}(A) . \tag{0.1}
\end{equation*}
$$

On the other hand, if $p_{A}(t)$ has roots $\lambda_{1}, \ldots, \lambda_{n}$, then

$$
p_{A}(t)=\left(t-\lambda_{1}\right) \cdots\left(t-\lambda_{n}\right) .
$$

Expanding this out, one has

$$
\begin{equation*}
p_{A}(t)=t^{n}-\left(\lambda_{1}+\cdots+\lambda_{n}\right) t^{n-1}+\cdots+(-1)^{n} \lambda_{1} \cdots \lambda_{n} . \tag{0.2}
\end{equation*}
$$

Putting (0.1) and (0.2) together, we see that

$$
\begin{aligned}
\operatorname{tr}(A) & =\lambda_{1}+\cdots+\lambda_{n} \\
\operatorname{det}(A) & =\lambda_{1} \cdots \lambda_{n} .
\end{aligned}
$$

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

