Exercise 6.6.19

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 6.6.19 from Lay [LLM16, §6.6]:

For a least-squares line fitting problem, we have matrices

$$X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \quad \hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}$$

where we are given the data of x_1, \ldots, x_m and y_1, \ldots, y_m , and our goal is to find the matrix $\hat{\beta}$, which is a least-squares solution to the matrix equation $X\beta = \mathbf{y}$ (since such a $\hat{\beta}$ will minimize $\|\mathbf{y} - X\hat{\beta}\|^2$, which is the sum of the squares of the errors, $(y_i - (\hat{\beta}_0 + \hat{\beta}x_i))^2)$. With the notation above, consider the following numbers:

- (i) $SS(R) := ||X\hat{\beta}||^2$, the sum of the squares of the "regression" term;
- (ii) $SS(T) := ||\mathbf{y}||^2$, the sum of the squares for the *y*-values;
- (iii) $SS(E) := ||\mathbf{y} X\hat{\boldsymbol{\beta}}||^2$, the sum of the squares for the "error" term.

Remark 0.1. Although it is not needed for this problem, one can also think of this as follows. If x_1, \ldots, x_m are m samples of a random variable x, and y_1, \ldots, y_m are m samples of a random variable y, then we have that $\frac{1}{m-1}$ SS(R) is the sample variance of the random variable $\hat{\beta}_0 + \hat{\beta}_1 x$, that $\frac{1}{m}$ SS(T) is the sample variance of the random variable y, and that $\frac{1}{m-1}$ SS(E) is the sample variance of the "error" random variable $y - (\hat{\beta}_0 + \hat{\beta}_1 x)$.

Exercise 6.6.19. Show that SS(T) = SS(R) + SS(E).

Solution. We have that

$$\mathbf{y} = X\hat{\boldsymbol{\beta}} + (\mathbf{y} - X\hat{\boldsymbol{\beta}})$$

Date: November 17, 2022.

Page 2

Since $X\hat{\beta}$ is the orthogonal projection of **y** onto the image of the linear map associated to *X*, we have $X\hat{\beta} \perp (\mathbf{y} - X\hat{\beta})$ (see for instance the solution to [LLM16, Exe. 6.6.14] for a review of this). From the Pythagorean Theorem (see [LLM16, Thm. 2, p.336]), it follows that

$$\|\mathbf{y}\|^{2} = \|X\hat{\boldsymbol{\beta}}\|^{2} + \|(\mathbf{y} - X\hat{\boldsymbol{\beta}})\|^{2},$$

which by definition is the assertion that SS(T) = SS(R) + SS(E).

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu