Exercise 6.6.19

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 6.6.19 from Lay [LLM16, §6.6]:

For a least-squares line fitting problem, we have matrices

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{m}
\end{array}\right], \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right], \hat{\boldsymbol{\beta}}=\left[\begin{array}{c}
\hat{\beta}_{0} \\
\hat{\beta}_{1}
\end{array}\right]
$$

where we are given the data of x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m}, and our goal is to find the matrix $\hat{\boldsymbol{\beta}}$, which is a least-squares solution to the matrix equation $X \boldsymbol{\beta}=\mathbf{y}$ (since such a $\hat{\boldsymbol{\beta}}$ will minimize $\|\mathbf{y}-X \hat{\boldsymbol{\beta}}\|^{2}$, which is the sum of the squares of the errors, $\left.\left(y_{i}-\left(\hat{\beta}_{0}+\hat{\beta} x_{i}\right)\right)^{2}\right)$. With the notation above, consider the following numbers:
(i) $\mathrm{SS}(\mathrm{R}):=\|X \hat{\boldsymbol{\beta}}\|^{2}$, the sum of the squares of the "regression" term;
(ii) $\operatorname{SS}(\mathrm{T}):=\|\mathbf{y}\|^{2}$, the sum of the squares for the y-values;
(iii) $\mathrm{SS}(\mathrm{E}):=\|\mathbf{y}-X \hat{\boldsymbol{\beta}}\|^{2}$, the sum of the squares for the "error" term.

Remark 0.1. Although it is not needed for this problem, one can also think of this as follows. If x_{1}, \ldots, x_{m} are m samples of a random variable x, and y_{1}, \ldots, y_{m} are m samples of a random variable y, then we have that $\frac{1}{m-1} \mathrm{SS}(\mathrm{R})$ is the sample variance of the random variable $\hat{\beta}_{0}+\hat{\beta}_{1} x$, that $\frac{1}{m} \mathrm{SS}(\mathrm{T})$ is the sample variance of the random variable y, and that $\frac{1}{m-1} \mathrm{SS}(\mathrm{E})$ is the sample variance of the "error" random variable $y-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x\right)$.

Exercise 6.6.19. Show that $\mathrm{SS}(\mathrm{T})=\mathrm{SS}(\mathrm{R})+\mathrm{SS}(\mathrm{E})$.

Solution. We have that

$$
\mathbf{y}=X \hat{\boldsymbol{\beta}}+(\mathbf{y}-X \hat{\boldsymbol{\beta}})
$$

Since $X \hat{\boldsymbol{\beta}}$ is the orthogonal projection of \mathbf{y} onto the image of the linear map associated to X, we have $X \hat{\boldsymbol{\beta}} \perp(\mathbf{y}-X \hat{\boldsymbol{\beta}})$ (see for instance the solution to [LLM16, Exe. 6.6.14] for a review of this). From the Pythagorean Theorem (see [LLM16, Thm. 2, p.336]), it follows that

$$
\|\mathbf{y}\|^{2}=\|X \hat{\boldsymbol{\beta}}\|^{2}+\|(\mathbf{y}-X \hat{\boldsymbol{\beta}})\|^{2},
$$

which by definition is the assertion that $\mathrm{SS}(T)=\mathrm{SS}(\mathrm{R})+\mathrm{SS}(\mathrm{E})$.

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

