Exercise 6.6.14

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 6.6.14 from Lay [LLM16, §6.6]:

Exercise 6.6.14. Let $\bar{x}=\frac{1}{m}\left(x_{1}+\cdots+x_{m}\right)$ and let $\bar{y}=\frac{1}{n}\left(y_{1}+\cdots+y_{m}\right)$. Show that the least-squares line for the data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ must pass through (\bar{x}, \bar{y}). That is, show that \bar{x} and \bar{y} must satisfy the linear equation $\bar{y}=\hat{\beta}_{0}+\hat{\beta}_{1} \bar{x}$.
[Hint: Derive this equation from the vector equation $\mathbf{y}=X \hat{\boldsymbol{\beta}}+\boldsymbol{\epsilon}$. Denote the first column of X by 1. Use the fact that the residual vector $\boldsymbol{\epsilon}$ is orthogonal to the column space of X and hence is orthogonal to 1.]

Solution. Recall that given an $m \times n$ matrix A and a vector \mathbf{b} in \mathbb{R}^{m}, a least squares solution $\hat{\mathbf{x}}$ to the equation

$$
A \mathbf{x}=\mathbf{b}
$$

is a vector $\hat{\mathbf{x}}$ in \mathbb{R}^{n} such that $A \hat{\mathbf{x}}$ is equal to $\pi_{W}(\mathbf{b})$, where $W=\operatorname{Im}(A)=\operatorname{Col}(A) \subseteq \mathbb{R}^{m}$ is the image of the linear map associated to A, and π_{W} is the orthogonal projection of \mathbb{R}^{m} onto W. From the definition of the orthogonal projection, we have that $\mathbf{b}-\pi_{W}(\mathbf{b})$ is in $W^{\perp}\left(=(\operatorname{Col}(A))^{\perp}\right)$. If we define the "error", or "residual vector", $\boldsymbol{\epsilon}$ as

$$
\boldsymbol{\epsilon}:=\mathbf{b}-A \hat{\mathbf{x}},
$$

then since $A \hat{\mathbf{x}}=\pi_{W}(\mathbf{b})$, we have $\boldsymbol{\epsilon}=\mathbf{b}-A \hat{\mathbf{x}}=\mathbf{b}-\pi_{W}(\mathbf{b}) \in W^{\perp}=(\operatorname{Col}(A))^{\perp}$.

Now, translating this into the language of least-squares line fitting, we have

$$
\begin{aligned}
& A=X=\left[\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{m}
\end{array}\right] \\
& \mathbf{b}=\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right] \\
& \hat{\mathbf{x}}=\hat{\boldsymbol{\beta}}=\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}_{1}
\end{array}\right]
\end{aligned}
$$

In this notation, the general assertion we explained above, that $\boldsymbol{\epsilon}=\mathbf{b}-A \hat{\mathbf{x}}=\mathbf{b}-\pi_{W}(\mathbf{b}) \in W^{\perp}=$ $(\operatorname{Col}(A))^{\perp}$, means that $\boldsymbol{\epsilon}=\mathbf{y}-X \hat{\boldsymbol{\beta}} \in(\operatorname{Col}(X))^{\perp}$; this was the first assertion the hint suggested we prove. In particular, ϵ is orthogonal to the first column of X, which is the vector denoted by 1 .

In other words, we have $\langle\mathbf{1}, \boldsymbol{\epsilon}\rangle=0$, i.e., we have

$$
\begin{aligned}
0 & =\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right]\left(\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]-\left[\begin{array}{cc}
1 & x_{1} \\
\vdots & \vdots \\
1 & x_{m}
\end{array}\right]\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}_{1}
\end{array}\right]\right) \\
& =\sum_{i=1}^{m} y_{i}-\sum_{i=1}^{m}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)
\end{aligned}
$$

Dividing by m, we have that

$$
0=\bar{y}-\left(\hat{\beta}^{0}+\hat{\beta}_{1} \bar{x}\right)
$$

which was what we were trying to prove.

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

