Exercise 6.6.14

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 6.6.14 from Lay [LLM16, §6.6]:

Exercise 6.6.14. Let $\overline{x} = \frac{1}{m}(x_1 + \dots + x_m)$ and let $\overline{y} = \frac{1}{n}(y_1 + \dots + y_m)$. Show that the least-squares line for the data $(x_1, y_1), \dots, (x_m, y_m)$ must pass through $(\overline{x}, \overline{y})$. That is, show that \overline{x} and \overline{y} must satisfy the linear equation $\overline{y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{x}$.

[*Hint*: Derive this equation from the vector equation $\mathbf{y} = X\hat{\boldsymbol{\beta}} + \boldsymbol{\epsilon}$. Denote the first column of *X* by **1**. Use the fact that the residual vector $\boldsymbol{\epsilon}$ is orthogonal to the column space of *X* and hence is orthogonal to **1**.]

Solution. Recall that given an $m \times n$ matrix A and a vector **b** in \mathbb{R}^m , a least squares solution $\hat{\mathbf{x}}$ to the equation

 $A\mathbf{x} = \mathbf{b}$

is a vector $\hat{\mathbf{x}}$ in \mathbb{R}^n such that $A\hat{\mathbf{x}}$ is equal to $\pi_W(\mathbf{b})$, where $W = \text{Im}(A) = \text{Col}(A) \subseteq \mathbb{R}^m$ is the image of the linear map associated to A, and π_W is the orthogonal projection of \mathbb{R}^m onto W. From the definition of the orthogonal projection, we have that $\mathbf{b} - \pi_W(\mathbf{b})$ is in W^{\perp} (= (Col(A))^{\perp}). If we define the "error", or "residual vector", $\boldsymbol{\epsilon}$ as

$$\boldsymbol{\epsilon} := \mathbf{b} - A\hat{\mathbf{x}},$$

then since $A\hat{\mathbf{x}} = \pi_W(\mathbf{b})$, we have $\boldsymbol{\epsilon} = \mathbf{b} - A\hat{\mathbf{x}} = \mathbf{b} - \pi_W(\mathbf{b}) \in W^{\perp} = (\operatorname{Col}(A))^{\perp}$.

Date: November 12, 2022.

Now, translating this into the language of least-squares line fitting, we have

$$A = X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix}$$
$$\mathbf{b} = \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$
$$\hat{\mathbf{x}} = \hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}$$

In this notation, the general assertion we explained above, that $\boldsymbol{\epsilon} = \mathbf{b} - A\hat{\mathbf{x}} = \mathbf{b} - \pi_W(\mathbf{b}) \in W^{\perp} = (\operatorname{Col}(A))^{\perp}$, means that $\boldsymbol{\epsilon} = \mathbf{y} - X\hat{\boldsymbol{\beta}} \in (\operatorname{Col}(X))^{\perp}$; this was the first assertion the hint suggested we prove. In particular, $\boldsymbol{\epsilon}$ is orthogonal to the first column of *X*, which is the vector denoted by **1**.

In other words, we have $\langle \mathbf{1}, \boldsymbol{\epsilon} \rangle = 0$, i.e., we have

$$0 = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \left(\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} - \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix} \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} \right)$$
$$= \sum_{i=1}^m y_i - \sum_{i=1}^m (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

Dividing by *m*, we have that

$$0 = \overline{y} - (\hat{\beta}^0 + \hat{\beta}_1 \overline{x}),$$

which was what we were trying to prove.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu