Exercise 6.4.19

Linear Algebra
 MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 6.4.19 from Lay [LLM16, §6.4]:

Exercise 6.4.19. Suppose $A=Q R$, where Q is $m \times n$ and R is $n \times n$. Show that if the columns of A are linearly independent, then R must be invertible.

Solution. The columns of A are linearly independent if and only if $\operatorname{ker}(A)=\{\mathbf{0}\}$. It follows that $\operatorname{ker}(R)=\{\mathbf{0}\}$, since if $\mathbf{x} \in \operatorname{ker}(R)$, then $A \mathbf{x}=Q R \mathbf{x}=Q \mathbf{0}=\mathbf{0}$, so that $\mathbf{x} \in \operatorname{ker}(A)=\{\mathbf{0}\}$. A square matrix is invertible if and only if its kernel is trivial; therefore R is invertible.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

