Exercise 5.5.24

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 5.5.24 from Lay [LLM16, §5.5]:

Exercise 5.5.24. Let A be an $n \times n$ real matrix with the property that $A^{T}=A$. Show that if $A \mathbf{x}=\lambda \mathbf{x}$ for some nonzero vector $\mathbf{x} \in \mathbb{C}^{n}$ and some complex number λ, then, in fact, λ is real and the real part of \mathbf{x} is an eigenvector of A.

Remark 0.1 (WARNING). This exercise is false as stated! As stated, it is not necessarily the case that the real part of \mathbf{x} is an eigenvector of A. For instance, let A be the identity matrix, and let \mathbf{x} be any nonzero vector with $\operatorname{Re} \boldsymbol{x}=0$. As a concrete example, you can take $A=I$ to be the 2×2 identity matrix, and $\mathbf{x}=\left[\begin{array}{l}i \\ i\end{array}\right]$. Then $A \mathbf{x}=\mathbf{x}=1 \cdot \mathbf{x}$, but $\operatorname{Re} \mathbf{x}=\mathbf{0}$ is the zero vector, and cannot be an eigenvector for A.

The problem should have been written as follows:
Exercise 5.5.24. (CORRECTED) Let A be an $n \times n$ real matrix with the property that $A^{T}=A$. Show that if $A \mathbf{x}=\lambda \mathbf{x}$ for some nonzero vector $\mathbf{x} \in \mathbb{C}^{n}$ and some complex number λ, then, in fact, λ is real. Show moreover that $A(\operatorname{Re} \boldsymbol{x})=\lambda \operatorname{Re} \mathbf{x}$ and $A(\operatorname{Im} \mathbf{x})=\lambda \operatorname{Im} \mathbf{x}$.

Remark 0.2. Since at least one of $\operatorname{Re} \mathbf{x}$ and $\operatorname{Im} \mathbf{x}$ is nonzero (otherwise $\mathbf{x}=\operatorname{Re} \mathbf{x}+i \operatorname{Im} \mathbf{x}=\mathbf{0}$), this means that at least one of $\operatorname{Re} \mathbf{x}$ and $\operatorname{Im} \mathbf{x}$ is a real eigenvector for λ.

Solution. First we will show, more generally, that if A is an $n \times n$ complex matrix with the property $\bar{A}^{T} A=A$, and $A \mathbf{x}=\lambda \mathbf{x}$ for some nonzero vector $\mathbf{x} \in \mathbb{C}^{n}$ and some complex number λ, then, in fact, λ is real. To show this, consider that

$$
\begin{equation*}
q_{A}(\mathbf{x})=\overline{\mathbf{x}}^{T} A \mathbf{x}=\overline{\mathbf{x}}^{T} \lambda \mathbf{x}=\lambda \overline{\mathbf{x}}^{T} \mathbf{x}=\lambda\|\mathbf{x}\|^{2} \tag{0.1}
\end{equation*}
$$

where $\|\mathbf{x}\|^{2}=\overline{\mathbf{x}}^{T} \mathbf{x}=q_{I}(\mathbf{x})$ (here I is the $n \times n$ identity matrix). From Exercise 5.5.23, we know that $q_{A}(\mathbf{x})$ and $q_{I}(\mathbf{x})$ are real. In fact, if $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, then we have

$$
\|\mathbf{x}\|^{2}=q_{I}(\mathbf{x})=\overline{\mathbf{x}}^{T} \mathbf{x}=\bar{x}_{1} x+\cdots+\bar{x}_{n} x_{n}=\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}>0
$$

is positive, since $\mathbf{x} \neq \mathbf{0}$. Therefore, we can divide by $\|\mathbf{x}\|^{2}$ in (0.1), and we find $\lambda=q_{A}(\mathbf{x}) /\|\mathbf{x}\|^{2}$ is the quotient of two real numbers, and is therefore real.

Now, assuming that A is real, we will show that $A(\operatorname{Re} \mathbf{x})=\lambda \operatorname{Re} \mathbf{x}$ and $A(\operatorname{Im} \mathbf{x})=\lambda \operatorname{Im} \mathbf{x}$. To do this, we will use that $\operatorname{Re}(A \mathbf{x})=A(\operatorname{Rex})$ and $\operatorname{Im}(A \mathbf{x})=A(\operatorname{Im} \mathbf{x})$ (this is asserted on the bottom of [LLM16, p.301], and is given as [LLM16, Exe. 5.5.25, p.303], but we give a proof below). Using this, we see that

$$
\begin{aligned}
& A(\operatorname{Re} \mathbf{x})=\operatorname{Re}(A \mathbf{x})=\operatorname{Re}(\lambda \mathbf{x})=\lambda \operatorname{Re} \mathbf{x} \\
& A(\operatorname{Im} \mathbf{x})=\operatorname{Im}(A \mathbf{x})=\operatorname{Im}(\lambda \mathbf{x})=\lambda \operatorname{Im} \mathbf{x}
\end{aligned}
$$

This completes the proof.
Here for completeness we give a proof of the fact that $\operatorname{Re}(A \mathbf{x})=A(\operatorname{Re} \mathbf{x})$ and $\operatorname{Im}(A \mathbf{x})=$ $A(\operatorname{Im} \mathbf{x})$. To start, given any complex matrix Z, you can check entry-by-entry that:

$$
\begin{aligned}
& \operatorname{Re} Z=\frac{1}{2}(Z+\bar{Z}) \\
& \operatorname{Im} Z=-\frac{i}{2}(Z-\bar{Z})
\end{aligned}
$$

Then if B is any real matrix of a size so that we can multiply $B Z$, we have
$\operatorname{Re}(B Z)=\frac{1}{2}(B Z+\overline{B Z})=\frac{1}{2}(B Z+\bar{B} \bar{Z})=\frac{1}{2}(B Z+B \bar{Z})=\frac{1}{2}\left(B(Z+\bar{Z})=B\left(\frac{1}{2}(Z+\bar{Z})\right)=B \operatorname{Re} Z\right.$.
The proof for $\operatorname{Im}(B Z)$ is similar.

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

