Exercise 5.5.23

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 5.5.23 from Lay [LLM16, §5.5]:

Exercise 5.5.23. Let *A* be an $n \times n$ real matrix with the property that $A^T = A$, let **x** be any vector in \mathbb{C}^n , and let $q(\mathbf{x}) = \overline{\mathbf{x}}^T A \mathbf{x}$. Show that $q(\mathbf{x})$ is a real number.

Solution. We will show more generally that if *A* is an $n \times n$ complex matrix with the property that $\bar{A}^T = A$, and **x** is any vector in \mathbb{C}^n , then $q(\mathbf{x}) = \bar{\mathbf{x}}^T A \mathbf{x}$ is a real number. To do this, it suffices to show that $\overline{q(\mathbf{x})} = q(\mathbf{x})$.

Indeed, we have

$\overline{q(\mathbf{x})} = \overline{\mathbf{x}}^T A \mathbf{x}$	
$=\mathbf{x}^T \overline{A} \mathbf{x}$	(see p.300, $\overline{BC} = \overline{B} \ \overline{C}$, and $\overline{\overline{B}} = B$)
$=\mathbf{x}^Tar{A}\overline{\mathbf{x}}$	$(\overline{BC} = \overline{B}\ \overline{C})$
$= (\mathbf{x}^T \bar{A} \overline{\mathbf{x}})^T$	(transpose of a 1×1 matrix)
$=ar{\mathbf{x}}^Tar{A}^T(\mathbf{x}^T)^T$	(see Thm. 3, p.101, $(BC)^T = C^T B^T$)
$= \overline{\mathbf{x}}^T A \mathbf{x}$	$((B^T)^T = B$, and we assumed $\bar{A}^T = A$)
$=q(\mathbf{x}).$	

Date: October 23, 2022.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu