Exercise 5.5.23

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 5.5 .23 from Lay [LLM16, §5.5]:

Exercise 5.5.23. Let A be an $n \times n$ real matrix with the property that $A^{T}=A$, let \mathbf{x} be any vector in \mathbb{C}^{n}, and let $q(\mathbf{x})=\overline{\mathbf{x}}^{T} A \mathbf{x}$. Show that $q(\mathbf{x})$ is a real number.

Solution. We will show more generally that if A is an $n \times n$ complex matrix with the property that $\bar{A}^{T}=A$, and \mathbf{x} is any vector in \mathbb{C}^{n}, then $q(\mathbf{x})=\overline{\mathbf{x}}^{T} A \mathbf{x}$ is a real number. To do this, it suffices to show that $\overline{q(\mathbf{x})}=q(\mathbf{x})$.

Indeed, we have

$$
\begin{array}{rlr}
\overline{q(\mathbf{x})} & =\overline{\overline{\mathbf{x}}^{T} A \mathbf{x}} & \\
& =\mathbf{x}^{T} \overline{A \mathbf{x}} & \text { (see p.300, } \overline{B C}=\bar{B} \bar{C}, \text { and } \overline{\bar{B}}=B) \\
& =\mathbf{x}^{T} \bar{A} \overline{\mathbf{x}} & (\overline{B C}=\bar{B} \bar{C}) \\
& =\left(\mathbf{x}^{T} \bar{A} \overline{\mathbf{x}}\right)^{T} & \text { (transpose of a } 1 \times 1 \text { matrix) } \\
& =\overline{\mathbf{x}}^{T} \bar{A}^{T}\left(\mathbf{x}^{T}\right)^{T} & \left(\text { see Thm. 3, p.101, }(B C)^{T}=C^{T} B^{T}\right) \\
& =\overline{\mathbf{x}}^{T} A \mathbf{x} & \left(\left(B^{T}\right)^{T}=B, \text { and we assumed } \bar{A}^{T}=A\right) \\
& =q(\mathbf{x}) . &
\end{array}
$$

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

