Exercise 5.4.25

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 5.4.25 from Lay [LLM16, §5.4]:

Exercise 5.4.25. The trace of a square matrix A is the sum of the diagonal entries in A and is denoted by $\operatorname{tr} A$. It can be verified (see below) that $\operatorname{tr}(F G)=\operatorname{tr}(G F)$ for any two $n \times n$ matrices F and G. Show that if A and B are similar, then $\operatorname{tr} A=\operatorname{tr} B$.

Solution. Suppose that A and B are similar. Then there exists an invertible matrix S such that $B=S^{-1} A S$. We then have

$$
\operatorname{tr}(B)=\operatorname{tr}\left(S^{-1} A S\right)=\operatorname{tr}\left(S^{-1}(A S)\right)=\operatorname{tr}\left((A S) S^{-1}\right)=\operatorname{tr}(A)
$$

Remark 0.1. We can prove $\operatorname{tr}(F G)=\operatorname{tr}(G F)$ as follows.

$$
\operatorname{tr}(F G)=\sum_{i=1}^{n}(F G)_{i i}=\sum_{i=1}^{n}\left(\sum_{k=n}^{n} F_{i k} G_{k i}\right)=\sum_{k=1}^{n}\left(\sum_{i=n}^{n} F_{i k} G_{k i}\right)=\sum_{k=1}^{n}\left(\sum_{i=n}^{n} G_{k i} F_{i k}\right)=\sum_{k=1}^{n}(G F)_{k k}=\operatorname{tr}(G F) .
$$

Remark 0.2. Another way to prove $\operatorname{tr} A=\operatorname{tr} B$ is through the characteristic polynomial. If two matrices A and B are similar, then $p_{A}(t)=p_{B}(t)$, since if $B=S^{-1} A S$, we have

$$
p_{A}(t)=\operatorname{det}(t I-A)=\operatorname{det}\left(S^{-1}(t I-A) S\right)=\operatorname{det}\left(t I-S^{-1} A S\right)=\operatorname{det}(t I-B)=p_{B}(t) .
$$

We also know that $p_{A}(t)=t^{n}-\operatorname{tr}(A) t^{n-1}+\cdots+(-1)^{n} \operatorname{det}(A)$, so that the equality $p_{A}(t)=p_{B}(t)$ implies that $\operatorname{tr}(A)=\operatorname{tr}(B)$.

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

