Exercise 5.3.27

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 5.3.27 from Lay [LLM16, §5.3]:

Exercise 5.3.27. Show that if *A* is both diagonalizable and invertible, then so is A^{-1} .

Solution. The first observation is that a diagonal matrix

$$D = \left(\begin{array}{cc} d_1 & & \\ & \ddots & \\ & & d_n \end{array}\right)$$

is invertible if and only if each of the d_i is non-zero (since det $D = \prod d_i$), and if D is invertible, then

$$D^{-1} = \left(\begin{array}{cc} 1/d_1 & & \\ & \ddots & \\ & & 1/d_n \end{array}\right)$$

is diagonal.

Now assume that *A* is both diagonalizable and invertible. Then we know that A^{-1} is also invertible (with inverse *A*), so that we only need to show that A^{-1} is diagonalizable. To this end, since *A* is diagonalizable, there exists an invertible matrix *S* such that

$$S^{-1}AS = D = \begin{pmatrix} d_1 & & \\ & \ddots & \\ & & d_n \end{pmatrix}$$

is diagonal. Taking the inverse of both sides of the equality $S^{-1}AS = D$, we have that $(S^{-1}AS)^{-1} = S^{-1}A^{-1}S = D^{-1}$ is diagonal (above we showed that D^{-1} was diagonal. Therefore, A^{-1} is diagonalizable, as well.

Date: October 15, 2022.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu