Exercise 5.3.27

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 5.3.27 from Lay [LLM16, §5.3]:

Exercise 5.3.27. Show that if A is both diagonalizable and invertible, then so is A^{-1}.
Solution. The first observation is that a diagonal matrix

$$
D=\left(\begin{array}{lll}
d_{1} & & \\
& \ddots & \\
& & d_{n}
\end{array}\right)
$$

is invertible if and only if each of the d_{i} is non-zero (since $\operatorname{det} D=\prod d_{i}$), and if D is invertible, then

$$
D^{-1}=\left(\begin{array}{ccc}
1 / d_{1} & & \\
& \ddots & \\
& & 1 / d_{n}
\end{array}\right)
$$

is diagonal.
Now assume that A is both diagonalizable and invertible. Then we know that A^{-1} is also invertible (with inverse A), so that we only need to show that A^{-1} is diagonalizable. To this end, since A is diagonalizable, there exists an invertible matrix S such that

$$
S^{-1} A S=D=\left(\begin{array}{ccc}
d_{1} & & \\
& \ddots & \\
& & d_{n}
\end{array}\right)
$$

is diagonal. Taking the inverse of both sides of the equality $S^{-1} A S=D$, we have that $\left(S^{-1} A S\right)^{-1}=$ $S^{-1} A^{-1} S=D^{-1}$ is diagonal (above we showed that D^{-1} was diagonal. Therefore, A^{-1} is diagonalizable, as well.

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

