Exercise 4.9.18

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 4.9.18 from Lay [LLM16, §4.9]:

Exercise 4.9.18. Show that every 2×2 stochastic matrix has at least one steady-state vector. Any such matrix can be written in the form

$$
P=\left[\begin{array}{rr}
1-\alpha & \beta \\
\alpha & 1-\beta
\end{array}\right],
$$

where α and β are constants between 0 and 1 (inclusive). (There are two linearly independent steady-state vectors if $\alpha=\beta=0$. Otherwise there is exactly one.)

Solution. Recall that a steady state vector for a stochastic matrix P is a vector \mathbf{x} with non-negative entries that sum to 1 such that $P \mathbf{x}=\mathbf{x}$. The condition $P \mathbf{x}=\mathbf{x}$ is equivalent to $\mathbf{x}-P \mathbf{x}=\mathbf{0}$, which is equivalent to $(I-P) \mathbf{x}=\mathbf{0}$. Since $I-P=\left[\begin{array}{rr}\alpha & -\beta \\ -\alpha & \beta\end{array}\right]$, we have that in matrix form the equation $(I-P) \mathbf{x}=\mathbf{0}$ is

$$
\left[\begin{array}{rr}
\alpha & -\beta \\
-\alpha & \beta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

There are 3 cases we want to consider:
(1) First we assume that $\alpha=\beta=0$. Then $I-P=0$, is the zero matrix, so that any vector \mathbf{x} satisfies $(I-P) \mathbf{x}=\mathbf{0}$. In particular the basis vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are linearly independent steady-state vectors.
(2) Next assume that $\alpha=0$ and $\beta \neq 0$. Then we have

$$
I-P=\left[\begin{array}{rr}
0 & -\beta \\
0 & \beta
\end{array}\right]
$$

with RREF matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

and modified matrix

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

so that a basis for the kernel of $I-P$ is given by

$$
\left[\begin{array}{r}
-1 \\
0
\end{array}\right]
$$

Scaling so that the sum of the entries is 1 , we have that $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is the unique steady state vector for P.
(3) Next assume that $\alpha \neq 0$. Then we have

$$
I-P=\left[\begin{array}{rr}
\alpha & -\beta \\
-\alpha & \beta
\end{array}\right]
$$

with RREF matrix

$$
\left[\begin{array}{rr}
1 & -\beta / \alpha \\
0 & 0
\end{array}\right]
$$

and modified matrix

$$
\left[\begin{array}{rr}
1 & -\beta / \alpha \\
0 & -1
\end{array}\right]
$$

so that a basis for the kernel of $I-P$ is given by

$$
\left[\begin{array}{r}
-\beta / \alpha \\
-1
\end{array}\right]
$$

Scaling so that the sum of the entries is 1 (scale the vector by $-\alpha$, then divide by the sum of the entries), we have that $\frac{1}{\alpha+\beta}\left[\begin{array}{l}\beta \\ \alpha\end{array}\right]$ is the unique steady state vector for P. (Note that even though our derivation required $\alpha \neq 0$, if one were to substitute $\alpha=0$ into the formula above, one would have the same vector we found in (2).)

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

