Exercise 4.7.6

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 4.7.6 from Lay [LLM16, §4.7]:

Exercise 4.7.6. Let $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\}$ and $\mathcal{F}=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ be bases for a vector space V, and suppose that

$$
\begin{align*}
\mathbf{f}_{1} & =2 \mathbf{d}_{1}-\mathbf{d}_{2}+\mathbf{d}_{3} \\
\mathbf{f}_{2} & =0 \mathbf{d}_{1}+3 \mathbf{d}_{2}+\mathbf{d}_{3} \tag{0.1}\\
\mathbf{f}_{3} & =-3 \mathbf{d}_{1}+0 \mathbf{d}_{2}+2 \mathbf{d}_{3}
\end{align*}
$$

a. Find the change-of-coordinates matrix to go from the coordinates with respect to the basis $\mathcal{F}=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ to the coordinates with respect to the basis $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\}$.
b. Find the coordinates with respect to the basis $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\}$ for the vector

$$
\mathbf{x}=\mathbf{f}_{1}-2 \mathbf{f}_{2}+2 \mathbf{f}_{3} .
$$

Solution. a. The change-of-coordinates matrix to go from the coordinates with respect to the basis $\mathcal{F}=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ to the coordinates with respect to the basis $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\}$ can be read off from (0.1) as the matrix

$$
\left[\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & 1 \\
-3 & 0 & 2
\end{array}\right]^{T}=\left[\begin{array}{rrr}
2 & 0 & -3 \\
-1 & 3 & 0 \\
1 & 1 & 2
\end{array}\right]
$$

b. The coordinates for the vector

$$
\mathbf{x}=\mathbf{f}_{1}-2 \mathbf{f}_{2}+2 \mathbf{f}_{3}
$$

with respect to the basis $\mathcal{F}=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ are given by

$$
(1,-2,2) .
$$

Therefore, given part a., the coordinates with respect to the basis $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\}$ are given by

$$
\left[\begin{array}{rrr}
2 & 0 & -3 \\
-1 & 3 & 0 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right]=\left[\begin{array}{r}
-4 \\
-7 \\
3
\end{array}\right]
$$

In other words, the coordinates for \mathbf{x} with respect to the basis $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\}$ are

$$
(-4,-7,3)
$$

Remark 0.1. Note that in our solution to b., we are claiming that

$$
\mathbf{x}=\mathbf{f}_{1}-2 \mathbf{f}_{2}+2 \mathbf{f}_{3}=-4 \mathbf{d}_{1}-7 \mathbf{d}_{2}+3 \mathbf{d}_{3} .
$$

We could have checked this directly by substituting in the following way:

$$
\begin{aligned}
\mathbf{x} & =\mathbf{f}_{1}-2 \mathbf{f}_{2}+2 \mathbf{f}_{3} \\
& =\left(2 \mathbf{d}_{1}-\mathbf{d}_{2}+\mathbf{d}_{3}\right)-2\left(3 \mathbf{d}_{2}+\mathbf{d}_{3}\right)+2\left(-3 \mathbf{d}_{1}+2 \mathbf{d}_{3}\right) \\
& =-4 \mathbf{d}_{1}-7 \mathbf{d}_{2}+3 \mathbf{d}_{3}
\end{aligned}
$$

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

