Exercise 4.2.26

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 4.2.26 from Lay [LLM16, §4.2]:

Exercise 4.2.26. True or False. Justify each answer.

(a) A kernel ("null space") is a vector space.

Solution. TRUE. Given a linear map $L : V \to V'$ of vector spaces, we have seen that the kernel of *L* is a sub-space of *V*, and therefore is a vector space (see also [LLM16, Theorem 2, p.201]).

(b) The column space of an $m \times n$ real matrix is in \mathbb{R}^m .

Solution. TRUE. The columns of the matrix have length *m*.

(c) Col *A* is the set of all solutions of $A\mathbf{x} = \mathbf{b}$.

Solution. FALSE. For instance if *A* is an $m \times n$ matrix, with $m \neq n$, then the column space of *A* is a (nonempty) subspace of \mathbb{R}^m , while the set of all solutions of $A\mathbf{x} = \mathbf{b}$ form a subset of \mathbb{R}^n , and so the column space of *A* cannot be equal to the set of all solutions of $A\mathbf{x} = \mathbf{b}$.

For reference, the column space of *A* is the set of all **b** such there exists a solution to the matrix equation $A\mathbf{x} = \mathbf{b}$ (see also the bottom of [LLM16, p.203]).

(d) ker *A* ("Nul *A*") is the kernel of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.

Solution. TRUE. This is the definition (see also [LLM16, p.201]). \Box

Date: October 5, 2022.

(e) The image ("range") of a linear map ("transformation") is a vector space.

Solution. TRUE. We have seen that the image of a linear map is a vector space (see also [LLM16, p.206]).

(f) The set of all solutions of a homogeneous linear differential equation is the kernel of a linear map ("transformation").

Solution. TRUE. See the bottom of [LLM16, p.206].

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu