Exercise 4.2.26

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 4.2.26 from Lay [LLM16, §4.2]:

Exercise 4.2.26. True or False. Justify each answer.
(a) A kernel ("null space") is a vector space.

Solution. TRUE. Given a linear map $L: V \rightarrow V^{\prime}$ of vector spaces, we have seen that the kernel of L is a sub-space of V, and therefore is a vector space (see also [LLM16, Theorem 2, p.201]).
(b) The column space of an $m \times n$ real matrix is in \mathbb{R}^{m}.

Solution. TRUE. The columns of the matrix have length m.
(c) $\operatorname{Col} A$ is the set of all solutions of $A \mathbf{x}=\mathbf{b}$.

Solution. FALSE. For instance if A is an $m \times n$ matrix, with $m \neq n$, then the column space of A is a (nonempty) subspace of \mathbb{R}^{m}, while the set of all solutions of $A \mathbf{x}=\mathbf{b}$ form a subset of \mathbb{R}^{n}, and so the column space of A cannot be equal to the set of all solutions of $A \mathbf{x}=\mathbf{b}$.

For reference, the column space of A is the set of all \mathbf{b} such there exists a solution to the matrix equation $A \mathbf{x}=\mathbf{b}$ (see also the bottom of [LLM16, p.203]).
(d) $\operatorname{ker} A\left({ }^{\prime} \mathrm{Nul} A\right.$ ") is the kernel of the mapping $\mathbf{x} \mapsto A \mathbf{x}$.

Solution. TRUE. This is the definition (see also [LLM16, p.201]).
(e) The image ("range") of a linear map ("transformation") is a vector space.

Solution. TRUE. We have seen that the image of a linear map is a vector space (see also [LLM16, p.206]).
(f) The set of all solutions of a homogeneous linear differential equation is the kernel of a linear map ("transformation").

Solution. TRUE. See the bottom of [LLM16, p.206].

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

