Exercise 2.9.9

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 2.9.9 from Lay [LLM16, §2.9]:

Exercise 2.9.9. In this problem, we display a matrix *A* and a row echelon form of *A*. Find bases for the column space, Col(A), and the kernel, ker(A), ("null space, Nul(A),"), and then state the dimensions of these subspaces.

$$A = \begin{bmatrix} 1 & -3 & 2 & -4 \\ -3 & 9 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ -4 & 12 & 2 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 2 & -4 \\ 0 & 0 & 5 & -7 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution. A basis for the column space of *A* is given by the columns of *A* corresponding to the columns of the row echelon form with pivots. In other words, a basis for the column space of *A* is given by the vectors

$$\begin{bmatrix} 1\\ -3\\ 2\\ -4 \end{bmatrix}, \begin{bmatrix} 2\\ -1\\ 4\\ 2 \end{bmatrix}, \begin{bmatrix} -4\\ 5\\ -3\\ 7 \end{bmatrix}.$$

Since there are 3 basis vectors for Col(A), we see that dim Col(A) = 3.

The kernel of *A* is the same as the space of solutions to the matrix equation $A\mathbf{x} = \mathbf{0}$. We can see that the RREF of *A* is

	1	-3	0	0
RRFF(A) -	0	0	1	0
$\operatorname{KKLI}(21) =$	0	0	0	1
	0	0	0	0

Date: September 18, 2022.

Therefore, the modified matrix is

- 1	-3	0	0
0	-1	0	0
0	0	1	0
0	0	0	1

and so a basis for ker(A) is given by the vector

$$\left|\begin{array}{c} -3\\ -1\\ 0\\ 0\end{array}\right|,$$

Since there is 1 basis vector for ker(A), we see that dim ker(A) = 1.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu