Exercise 2.9.9

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 2.9.9 from Lay [LLM16, §2.9]:

Exercise 2.9.9. In this problem, we display a matrix A and a row echelon form of A. Find bases for the column space, $\operatorname{Col}(A)$, and the kernel, $\operatorname{ker}(A)$, ("null space, $\operatorname{Nul}(A)$,"), and then state the dimensions of these subspaces.

$$
A=\left[\begin{array}{rrrr}
1 & -3 & 2 & -4 \\
-3 & 9 & -1 & 5 \\
2 & -6 & 4 & -3 \\
-4 & 12 & 2 & 7
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & -3 & 2 & -4 \\
0 & 0 & 5 & -7 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Solution. A basis for the column space of A is given by the columns of A corresponding to the columns of the row echelon form with pivots. In other words, a basis for the column space of A is given by the vectors

$$
\left[\begin{array}{r}
1 \\
-3 \\
2 \\
-4
\end{array}\right],\left[\begin{array}{r}
2 \\
-1 \\
4 \\
2
\end{array}\right],\left[\begin{array}{r}
-4 \\
5 \\
-3 \\
7
\end{array}\right]
$$

Since there are 3 basis vectors for $\operatorname{Col}(A)$, we see that $\operatorname{dim} \operatorname{Col}(A)=3$.
The kernel of A is the same as the space of solutions to the matrix equation $A \mathbf{x}=\mathbf{0}$. We can see that the RREF of A is

$$
\operatorname{RREF}(A)=\left[\begin{array}{rrrr}
1 & -3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, the modified matrix is

$$
\left[\begin{array}{rrrr}
1 & -3 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and so a basis for $\operatorname{ker}(A)$ is given by the vector

$$
\left[\begin{array}{r}
-3 \\
-1 \\
0 \\
0
\end{array}\right],
$$

Since there is 1 basis vector for $\operatorname{ker}(A)$, we see that $\operatorname{dim} \operatorname{ker}(A)=1$.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

