Exercise 2.3.27

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 2.3.27 from Lay [LLM16, §2.3]:

Exercise 2.3.27. Suppose that A and B are square matrices of the same size, and $A B$ is invertible. Show that A and B are invertible. [Hint: There is a matrix W such that $A B W=I$. Why?]

Solution. If $A B$ is invertible, then by definition, there exists a square matrix W, of the same size as A and B, such that $W A B=A B W=I$. Therefore B has a left inverse (namely $W A$) and A has a right inverse (namely $B W$). Since a left inverse is also a right inverse, and conversely [LLM16, Theorem 8 j. and k., p.114, p.105, Exercise 2.1.25] (see below), we have that A and B are invertible.

The textbook does not do a particularly good job of explaining why a left inverse is also a right inverse, and conversely. Here is a useful theorem that should be added to [LLM16, Theorem 8, p.114]:

Theorem 0.1 (Left inverses are right inverses, and conversely). Suppose that $A \in \mathrm{M}_{n \times n}(\mathbb{R})$.
(1) If there exists a matrix $B \in \mathrm{M}_{n \times n}(\mathbb{R})$ such that $B A=I$, then $A B=I$. In particular, A is invertible and $B=A^{-1}$.
(2) If there exists a matrix $B \in \mathrm{M}_{n \times n}(\mathbb{R})$ such that $A B=I$, then $B A=I$. In particular, A is invertible and $B=A^{-1}$.

Proof. (1) Suppose there exists a matrix $B \in \mathrm{M}_{n \times n}(\mathbb{R})$ such that $B A=I$. Then by [LLM16, Theorem 8 j . and k.] there exists a matrix $C \in \mathrm{M}_{n \times n}(\mathbb{R})$ such that $A C=I$. If we consider the product $B A C$, we have that $C=I C=(B A) C=B(A C)=B I=B$, so that $C=B$ (as an aside, the conclusion that $C=B$ is a special case of [LLM16, Exercise 2.1.25]). Therefore $A B=A C=I$. As, $A B=B A=I$, we see that B is an inverse to A, and since inverses are unique (see [LLM16, p.105]), we have that $B=A^{-1}$.
(2) The proof is similar, and left to you.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

