Exercise 1.9.29

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 1.9.29 from Lay [LLM16, §1.9]:

Exercise 1.9.29. Describe the possible echelon forms of the matrix form ("standard matrix") of a linear map ("transformation") $T : \mathbb{R}^4 \to \mathbb{R}^3$ that is surjective ("onto").

Solution. The possible echelon forms for such a matrix are:

	*	*	*			*	*	*			*	*	*		0		*	*]
0		*	*	,	0		*	*	,	0	0		*	,	0	0		*
0	0		* _		0	0	0	•		0	0	0			0	0	0	

where a \blacksquare indicates a non-zero entry, and a * indicates an arbitrary entry. Indeed, for *T* to be surjective ("onto"), the columns of the matrix form ("standard matrix") *A* of *T* must span \mathbb{R}^3 ; by [LLM16, Theorem 4 d., p.37], this means that *A* has a leading entry ("pivot") in every row. The matrices above are exactly the echelon form matrices with a leading entry ("pivot") in every row.

Date: September 11, 2022.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu