Exercise 1.9.29

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 1.9.29 from Lay [LLM16, §1.9]:

Exercise 1.9.29. Describe the possible echelon forms of the matrix form ("standard matrix") of a linear map ("transformation") $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ that is surjective ("onto").

Solution. The possible echelon forms for such a matrix are:

$$
\left[\begin{array}{cccc}
\boldsymbol{\square} & * & * & * \\
0 & \boldsymbol{\square} & * & * \\
0 & 0 & \boldsymbol{\square} & *
\end{array}\right],\left[\begin{array}{cccc}
\boldsymbol{\square} & * & * & * \\
0 & \boldsymbol{\square} & * & * \\
0 & 0 & 0 & \boldsymbol{\square}
\end{array}\right],\left[\begin{array}{cccc}
\boldsymbol{\square} & * & * & * \\
0 & 0 & \boldsymbol{\square} & * \\
0 & 0 & 0 & \boldsymbol{\square}
\end{array}\right],\left[\begin{array}{cccc}
0 & \boldsymbol{\square} & * & * \\
0 & 0 & \boldsymbol{\square} & * \\
0 & 0 & 0 & \boldsymbol{\square}
\end{array}\right]
$$

where a \square indicates a non-zero entry, and a $*$ indicates an arbitrary entry. Indeed, for T to be surjective ("onto"), the columns of the matrix form ("standard matrix") A of T must span \mathbb{R}^{3}; by [LLM16, Theorem $4 \mathrm{~d} ., \mathrm{p} .37$], this means that A has a leading entry ("pivot") in every row. The matrices above are exactly the echelon form matrices with a leading entry ("pivot") in every row.

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

