Exercise 1.9.2

Linear Algebra
 MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 1.9.2 from Lay [LLM16, §1.9]:

Exercise 1.9.2. Assume that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear map ("transformation") such that $T\left(\mathbf{e}_{1}\right)=$ $(1,3), T\left(\mathbf{e}_{2}\right)=(4,-7)$, and $T\left(\mathbf{e}_{3}\right)=(-5,4)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{3} are the columns of the standard 3×3 identity matrix. Find the matrix form ("standard matrix") of T.

Solution. The matrix form of T is the matrix with columns given by $T\left(\mathbf{e}_{1}\right)=(1,3), T\left(\mathbf{e}_{2}\right)=$ $(4,-7)$, and $T\left(\mathbf{e}_{3}\right)=(-5,4)$; i.e., the matrix form of T is

$$
\left[\begin{array}{rrr}
1 & 4 & -5 \\
3 & -7 & 4
\end{array}\right] .
$$

REFERENCES

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

Email address: casa@math.colorado.edu

