Exercise 1.7.2

Linear Algebra MATH 2130

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 1.7.2 from Lay [LLM16, §1.7]:

Exercise 1.7.2. Determine if the following vectors are linearly independent:

$$\mathbf{v}_1 = \begin{bmatrix} 0\\0\\2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 0\\5\\-8 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} -3\\4\\1 \end{bmatrix},$$

Solution. The vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are linearly independent. Indeed, by definition, they are linearly independent if and only if we have that for all $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, if $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = 0$, then $\alpha_1 = \alpha_2 = \alpha_3 = 0$. This is equivalent to asking that that matrix equation

0	0	-3	α1		0	
0	5	4	α2	=	0	
2	-8	1	α3		0	

have as its only solution the vector

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

But this is true, since we have

$$RREF\left(\left[\begin{array}{rrrr} 0 & 0 & -3\\ 0 & 5 & 4\\ 2 & -8 & 1 \end{array}\right]\right) = \left[\begin{array}{rrrr} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right]$$

Date: September 11, 2022.

Remark 0.1. Alternatively, we have seen that the rows of a matrix A are linearly independent if and only if there are no non-zero rows in RREF(A). Therefore, we could consider the matrix with

rows given by \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , namely $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 5 & -8 \\ -3 & 4 & 1 \end{bmatrix}$, and then check that $RREF\left(\begin{bmatrix} 0 & 0 & 2 \\ 0 & 5 & -8 \\ -3 & 4 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

Since this has no non-zero rows, we can conclude that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are linearly independent.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu