Exercise 1.7.2

Linear Algebra
 MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 1.7.2 from Lay [LLM16, §1.7]:

Exercise 1.7.2. Determine if the following vectors are linearly independent:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}
0 \\
5 \\
-8
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}
-3 \\
4 \\
1
\end{array}\right]
$$

Solution. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are linearly independent. Indeed, by definition, they are linearly independent if and only if we have that for all $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$, if $\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}=0$, then $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. This is equivalent to asking that that matrix equation

$$
\left[\begin{array}{rrr}
0 & 0 & -3 \\
0 & 5 & 4 \\
2 & -8 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

have as its only solution the vector

$$
\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

But this is true, since we have

$$
\operatorname{RREF}\left(\left[\begin{array}{rrr}
0 & 0 & -3 \\
0 & 5 & 4 \\
2 & -8 & 1
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Remark 0.1. Alternatively, we have seen that the rows of a matrix A are linearly independent if and only if there are no non-zero rows in $\operatorname{RREF}(A)$. Therefore, we could consider the matrix with rows given by $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}, namely $\left[\begin{array}{rrr}0 & 0 & 2 \\ 0 & 5 & -8 \\ -3 & 4 & 1\end{array}\right]$, and then check that

$$
\operatorname{RREF}\left(\left[\begin{array}{rrr}
0 & 0 & 2 \\
0 & 5 & -8 \\
-3 & 4 & 1
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Since this has no non-zero rows, we can conclude that $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are linearly independent.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

