Exercise 1.2.7

Linear Algebra
 MATH 2130

SEBASTIAN CASALAINA

Abstract. This is Exercise 1.2.7 from Lay [LLM16, §1.2]:

Exercise 1.2.7. Find the general solutions of the system whose augmented matrix is given below.

$$
\left[\begin{array}{llll}
1 & 3 & 4 & 7 \\
3 & 9 & 7 & 6
\end{array}\right]
$$

Solution. We start with the augmented matrix:

$$
\left[\begin{array}{lll|l}
1 & 3 & 4 & 7 \\
3 & 9 & 7 & 6
\end{array}\right]
$$

and then put the left hand side of the matrix in RREF. To do this, we first add -3 times the first row to the second row, giving

$$
\left[\begin{array}{rrr|r}
1 & 3 & 4 & 7 \\
0 & 0 & -5 & -15
\end{array}\right]
$$

Dividing the second row by -5 , we have

$$
\left[\begin{array}{lll|l}
1 & 3 & 4 & 7 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Adding -4 times the second row to the first row, we have

$$
\left[\begin{array}{rrr|r}
1 & 3 & 0 & -5 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

The left hand side of the matrix above is in RREF.

Modifying the matrix above (with rows that are all zero except for one entry, which is a -1) until the left hand side is a square matrix with either 1 or -1 on the diagonal, we have

$$
\left[\begin{array}{rrr|r}
1 & 3 & 0 & -5 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Therefore, the solutions are

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1 \\
0
\end{array}\right] t+\left[\begin{array}{r}
-5 \\
0 \\
3
\end{array}\right], t \in \mathbb{R}
$$

Remark 0.1. One can alternatively (by setting $t=-x_{2}$) write the solutions as:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
1 \\
0
\end{array}\right] x_{2}+\left[\begin{array}{r}
-5 \\
0 \\
3
\end{array}\right], x_{2} \in \mathbb{R}
$$

which is the same as writing $x_{1}=-3 x_{2}-5, x_{2}$ is free, and $x_{3}=3$.

References

[LLM16] David Lay, Stephen Lay, and Judi McDonald, Linear Algebra and its Applications, Fifth edition, Pearson, 2016.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309

Email address: casa@math.colorado.edu

